Domain-domain interactions in high mobility group 1 protein (HMG1). 1999

J Ramstein, and D Locker, and M E Bianchi, and M Leng
Centre de Biophysique Moléculaire, Orléans, France. ranstein@cnrs-orleans.fr

The high mobility group protein HMG1 is a conserved chromosomal protein with two homologous DNA-binding domains, A and B, and an acidic carboxy-terminal tail, C. The structure of isolated domains A and B has been previously determined by NMR, but the interactions of the different domains within the complete protein were unknown. By means of differential scanning calorimetry and circular dichroism we have investigated the thermal stability of HMG1, of the truncated protein A-B (HMG1 without the acidic tail C) and of the isolated domains A and B. In 3 mm sodium acetate buffer, pH 5, the thermal melting of domains A and B are identical (transition temperature tm = 43 degrees C and 41 degrees C, denaturation enthalpies DeltaH = 46 kcal.mol-1). The thermal melting of protein A-B presents two nearly identical transitions (tm = 40 degrees C and 41 degrees C, DeltaH = 44 kcal.mol-1 and 46 kcal.mol-1, respectively). We conclude that the two domains A and B within protein A-B behave as independent domains. The thermal melting of HMG1 is biphasic. The two transitions have a different value of tm (38 degrees C and 55 degrees C) and corresponding values of DeltaH around 40 kcal.mol-1. We conclude that within HMG1, the acidic tail C is interacting with one of the two domains A and B, however, the two domains A and B do not interact with each other. At 37 degrees C, one of the two domains A and B, within HMG1, is partly unfolded, whereas the other which interacts with the acidic tail C, is fully native. The interaction free energy of the acidic tail C is estimated to be in the range of 2.5 kcal.mol-1 based on simulations of the thermograms of HMG1 as a function of the interaction free energy.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006609 High Mobility Group Proteins A family of low-molecular weight, non-histone proteins found in chromatin. HMG Proteins,Calf Thymus Chromatin Protein HMG,High Mobility Group Chromosomal Proteins
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

J Ramstein, and D Locker, and M E Bianchi, and M Leng
August 1998, Mechanisms of development,
J Ramstein, and D Locker, and M E Bianchi, and M Leng
November 1994, The Journal of biological chemistry,
J Ramstein, and D Locker, and M E Bianchi, and M Leng
February 2003, Biochemical and biophysical research communications,
J Ramstein, and D Locker, and M E Bianchi, and M Leng
October 1994, Biochemistry,
J Ramstein, and D Locker, and M E Bianchi, and M Leng
November 1988, Nucleic acids research,
J Ramstein, and D Locker, and M E Bianchi, and M Leng
May 2000, The Biochemical journal,
J Ramstein, and D Locker, and M E Bianchi, and M Leng
June 1998, Nihon Rinsho Men'eki Gakkai kaishi = Japanese journal of clinical immunology,
J Ramstein, and D Locker, and M E Bianchi, and M Leng
May 1998, European journal of biochemistry,
J Ramstein, and D Locker, and M E Bianchi, and M Leng
July 1992, Nucleic acids research,
J Ramstein, and D Locker, and M E Bianchi, and M Leng
October 1994, European journal of biochemistry,
Copied contents to your clipboard!