Effects of divalent metal ions on the activity and conformation of native and 3-fluorotyrosine-PvuII endonucleases. 1999

C M Dupureur, and L M Hallman
Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX, USA. cdup@tamu.edu

The activities of restriction enzymes are important examples of Mg(II)-dependent hydrolysis of DNA. While a number of crystallographic studies of enzyme-DNA complexes have also involved metal ions, there have been no solution studies exploring the relationship between enzyme conformation and metal-ion binding in restriction enzymes. Using PvuII restriction endonuclease as a model system, we have successfully developed biosynthetic fluorination and NMR spectroscopy as a solution probe of restriction-enzyme conformation. The utility of this method is demonstrated with a study of metal-ion binding by PvuII endonuclease. Replacement of 74% (+/- 10%) of the Tyr residues in PvuII endonuclease by 3-fluorotyrosine produces an enzyme with Mg(II)-supported specific activity and sequence specificity that is indistinguishable from that of the native enzyme. Mn(II) supports residual activity of both the native and fluorinated enzymes; Ca(II) does not support activity in either enzyme, a result consistent with previous studies. 1H- and 19F-NMR spectroscopic studies reveal that while Mg(II) does not alter the enzyme conformation, the paramagnetic Mn(II) produces both short-range spectral broadening and longer range changes in chemical shift. Most interestingly, Ca(II) binding perturbs a larger number of different resonances than Mn(II). Coupled with earlier mutagenesis studies that place Ca(II) in the active site [Nastri, H. G., Evans, P.D., Walker, I.H. & Riggs, P.D. (1997) J. Biol. Chem. 272, 25761-25767], these data suggest that the enzyme makes conformational adjustments to accommodate the distinct geometric preferences of Ca(II) and may play a role in the inability of this metal ion to support activity in restriction enzymes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001051 Apoenzymes The protein components of enzyme complexes (HOLOENZYMES). An apoenzyme is the holoenzyme minus any cofactors (ENZYME COFACTORS) or prosthetic groups required for the enzymatic function. Apoenzyme
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

C M Dupureur, and L M Hallman
July 1996, The Journal of biological chemistry,
C M Dupureur, and L M Hallman
April 1971, The Journal of laboratory and clinical medicine,
C M Dupureur, and L M Hallman
June 1962, Journal of bacteriology,
C M Dupureur, and L M Hallman
August 2002, Journal of colloid and interface science,
C M Dupureur, and L M Hallman
March 2005, Journal of colloid and interface science,
C M Dupureur, and L M Hallman
November 2017, Metallomics : integrated biometal science,
Copied contents to your clipboard!