DNA triple-helix formation on nucleosome core particles. Effect of length of the oligopurine tract. 1999

P M Brown, and K R Fox
Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southhampton, UK.

We have used DNase I footprinting to examine the formation of intermolecular triplexes on DNA fragments which have been complexed with nucleosome core particles. We have prepared five DNA fragments, based on the 160-bp tyrT sequence, which contain different length oligopurine tracts (up to 25 bp) at two different positions along the fragment, and have examined their availability for triple-helix formation after reconstituting onto nucleosome core particles. These results are compared with the formation of shorter triplexes in the same regions. In general we find that increasing the length of the complex does not facilitate nucleosomal triplex formation and that the most important factor affecting triplex formation is the position of the target site within the nucleosome-bound fragment. In some instances we find that longer oligonucleotides inhibit triplex formation. Although successful triplex formation was achieved on the longest nucleosome-bound oligopurine tracts, this was accompanied by changes in cleavage pattern that suggest oligonucleotide-induced changes in nucleosome structure.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D018983 DNA Footprinting A method for determining the sequence specificity of DNA-binding proteins. DNA footprinting utilizes a DNA damaging agent (either a chemical reagent or a nuclease) which cleaves DNA at every base pair. DNA cleavage is inhibited where the ligand binds to DNA. (from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Footprints, DNA,DNA Footprint,DNA Footprintings,DNA Footprints,Footprint, DNA,Footprinting, DNA,Footprintings, DNA

Related Publications

P M Brown, and K R Fox
August 1998, Nucleic acids research,
P M Brown, and K R Fox
January 1991, Nucleic acids symposium series,
P M Brown, and K R Fox
January 2004, The Journal of biological chemistry,
P M Brown, and K R Fox
May 2019, Chemical research in toxicology,
P M Brown, and K R Fox
November 2023, Journal of the American Chemical Society,
P M Brown, and K R Fox
December 2019, Chemical research in toxicology,
Copied contents to your clipboard!