Properties of NMDA receptors in rat spinal cord motoneurons. 1999

J I Palecek, and G Abdrachmanova, and V Vlachová, and L Vyklick
Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.

Postnatal development and properties of N-methyl-d-aspartate (NMDA) receptors were studied with whole-cell and outside-out patch-clamp techniques in interneurons and fluorescence-labelled motoneurons in rat spinal cord slices. Both the absolute amplitude of NMDA-induced currents and currents normalized with respect to the motoneuron capacitance increased significantly at postnatal days 10-13 when compared to the responses evoked at postnatal days 2-3. The mean amplitude of the responses to kainate also increased in motoneurons of postnatal days 10-13. Single-channel currents induced by low concentrations of glutamate, exhibited four distinct amplitude levels corresponding to 19.2 +/- 2.4 pS, 38.4 +/- 3.5 pS, 56.3 +/- 2. 4 pS and 69.6 +/- 3.7 pS. In contrast, the conductance of single channels, recorded under identical conditions, in rat spinal cord interneurons was less, 15.3 +/- 3.2 pS, 29.9 +/- 5.4 pS, 46.7 +/- 4. 8 pS and 62.4 +/- 3.9 pS. The high (56/70 pS) conductance single-channel openings in motoneuron patches were sensitive to NMDA receptor inhibitors D-2-amino-5-phosphonovalerate, 7-chlorokynurenic acid and ifenprodil. Whole-cell NMDA-evoked currents were blocked in a voltage-dependent manner by extracellular Mg2+ with an apparent dissociation constant for Mg2+ binding at 0 mV of 1.8 +/- 0.5 mm. The conductance and relative distribution of NMDA receptor channel openings induced by 1 micrometer glutamate in patches isolated from the motoneurons were independent of age from postnatal day 4 to 14. The results suggest that the properties of NMDA receptor channels in motoneurons differ from those in spinal cord interneurons and cells transfected with NR1/NR2 subunits.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D007736 Kynurenic Acid A broad-spectrum excitatory amino acid antagonist used as a research tool. Kynurenate,Acid, Kynurenic
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010880 Piperidines A family of hexahydropyridines.
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005260 Female Females
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium

Related Publications

J I Palecek, and G Abdrachmanova, and V Vlachová, and L Vyklick
March 2000, The European journal of neuroscience,
J I Palecek, and G Abdrachmanova, and V Vlachová, and L Vyklick
January 2002, The Journal of physiology,
J I Palecek, and G Abdrachmanova, and V Vlachová, and L Vyklick
August 2001, The European journal of neuroscience,
J I Palecek, and G Abdrachmanova, and V Vlachová, and L Vyklick
July 1988, Developmental biology,
J I Palecek, and G Abdrachmanova, and V Vlachová, and L Vyklick
August 1994, Neuroscience letters,
J I Palecek, and G Abdrachmanova, and V Vlachová, and L Vyklick
January 1978, Neuropharmacology,
J I Palecek, and G Abdrachmanova, and V Vlachová, and L Vyklick
December 1997, Experimental neurology,
J I Palecek, and G Abdrachmanova, and V Vlachová, and L Vyklick
December 2001, Journal of neuroscience methods,
J I Palecek, and G Abdrachmanova, and V Vlachová, and L Vyklick
March 2000, Neurochemical research,
J I Palecek, and G Abdrachmanova, and V Vlachová, and L Vyklick
November 2000, Brain research bulletin,
Copied contents to your clipboard!