Techniques to improve flow cytometric detection of light chain restriction. 1996

G R Shaw, and E Gonering, and S Koller
Marshfield Clinic, WI 54449, USA.

OBJECTIVE To compare 3-color flow cytometry (using a permeabilization step to detect cytoplasmic immunoglobulin in selected cases) with 2-color flow cytometry in the detection of light chain restriction (LCR). METHODS Analysis of clinical specimens submitted for lymphocyte immunophenotyping using both methods. METHODS Marshfield Laboratories serving Saint Joseph's Hospital (525 beds) and the Marshfield Health Care Network. METHODS Sensitivity and specificity for detecting LCR in B-cell neoplasms. Final diagnosis based on review of clinical, laboratory and histologic data. RESULTS Of 61 specimens, the 3-color method yielded better sensitivity, detecting LCR in 30 of 39 cases of B-cell neoplasms (77%) versus 16 of 39 (41%) for the 2-color method (P < 0.001). Both methods had comparable specificity (95-100%). The 3-color cytoplasmic technique identified another 4 cases yielding an overall sensitivity of 87% for a 2-tiered testing strategy. CONCLUSIONS A 3-color surface technique, backed up by a permeabilization step in selected cases, provides a cost-effective and sensitive technique for detecting LCR.

UI MeSH Term Description Entries
D007147 Immunoglobulin Light Chains Polypeptide chains, consisting of 211 to 217 amino acid residues and having a molecular weight of approximately 22 kDa. There are two major types of light chains, kappa and lambda. Two Ig light chains and two Ig heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) make one immunoglobulin molecule. Ig Light Chains,Immunoglobulins, Light-Chain,Immunoglobulin Light Chain,Immunoglobulin Light-Chain,Light-Chain Immunoglobulins,Chains, Ig Light,Chains, Immunoglobulin Light,Immunoglobulins, Light Chain,Light Chain Immunoglobulins,Light Chain, Immunoglobulin,Light Chains, Ig,Light Chains, Immunoglobulin,Light-Chain, Immunoglobulin
D003362 Cost-Benefit Analysis A method of comparing the cost of a program with its expected benefits in dollars (or other currency). The benefit-to-cost ratio is a measure of total return expected per unit of money spent. This analysis generally excludes consideration of factors that are not measured ultimately in economic terms. In contrast a cost effectiveness in general compares cost with qualitative outcomes. Cost and Benefit,Cost-Benefit Data,Benefits and Costs,Cost Benefit,Cost Benefit Analysis,Cost-Utility Analysis,Costs and Benefits,Economic Evaluation,Marginal Analysis,Analyses, Cost Benefit,Analysis, Cost Benefit,Analysis, Cost-Benefit,Analysis, Cost-Utility,Analysis, Marginal,Benefit and Cost,Cost Benefit Analyses,Cost Benefit Data,Cost Utility Analysis,Cost-Benefit Analyses,Cost-Utility Analyses,Data, Cost-Benefit,Economic Evaluations,Evaluation, Economic,Marginal Analyses
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D016130 Immunophenotyping Process of classifying cells of the immune system based on structural and functional differences. The process is commonly used to analyze and sort T-lymphocytes into subsets based on CD antigens by the technique of flow cytometry. Lymphocyte Immunophenotyping,Lymphocyte Subtyping,Immunologic Subtyping,Immunologic Subtypings,Lymphocyte Phenotyping,Subtyping, Immunologic,Subtypings, Immunologic,Immunophenotyping, Lymphocyte,Immunophenotypings,Immunophenotypings, Lymphocyte,Lymphocyte Immunophenotypings,Lymphocyte Phenotypings,Lymphocyte Subtypings,Phenotyping, Lymphocyte,Phenotypings, Lymphocyte,Subtyping, Lymphocyte,Subtypings, Lymphocyte
D016393 Lymphoma, B-Cell A group of heterogeneous lymphoid tumors generally expressing one or more B-cell antigens or representing malignant transformations of B-lymphocytes. B-Cell Lymphoma,B Cell Lymphoma,B-Cell Lymphomas,Lymphoma, B Cell,Lymphomas, B-Cell

Related Publications

G R Shaw, and E Gonering, and S Koller
January 2002, Methods in cell science : an official journal of the Society for In Vitro Biology,
G R Shaw, and E Gonering, and S Koller
January 1990, Immunology series,
G R Shaw, and E Gonering, and S Koller
January 2002, Veterinary clinical pathology,
G R Shaw, and E Gonering, and S Koller
January 2015, Journal of B.U.ON. : official journal of the Balkan Union of Oncology,
G R Shaw, and E Gonering, and S Koller
November 2015, Cytometry. Part A : the journal of the International Society for Analytical Cytology,
G R Shaw, and E Gonering, and S Koller
March 2000, Journal of virological methods,
G R Shaw, and E Gonering, and S Koller
January 1984, International archives of allergy and applied immunology,
G R Shaw, and E Gonering, and S Koller
March 2000, Journal of microbiological methods,
Copied contents to your clipboard!