Metabolism of halofantrine to its equipotent metabolite, desbutylhalofantrine, is decreased when orally administered with ketoconazole. 1998

S M Khoo, and J H Porter, and G A Edwards, and W N Charman
Department of Pharmaceutics, Victorian College of Pharmacy, Monash University, Parkville, Australia.

Halofantrine (Hf) is a highly lipophilic antimalarial with poor and erratic absorption. Published data indicates that the oral bioavailability of Hf was increased 3-fold in humans and 12-fold in dogs when administered postprandially; however, the proportional formation of the active desbutyl metabolite (desbutylhalofantrine, Hfm) decreased 2.4-fold in humans and 6.8-fold in dogs (Milton et al., Br. J. Clin. Pharmacol. 1989, 28, 71-77; Humberstone et al., J. Pharm. Sci. 1996, 85, 525-529). The current study was undertaken to confirm the putative involvement of CYP3A4 in the N-dealkylation of Hf to Hfm by administering Hf with and without ketoconazole (KC), a specific CYP3A4 inhibitor, and measuring the resulting plasma concentration profiles of Hf and Hfm. The plasma Hfm/Hf AUC(0-72 h) ratio after fasted oral administration of Hf without KC was 0.56, whereas the ratio after fasted oral administration with KC was less than 0.05. It is likely that both hepatic and prehepatic (enterocyte-based) CYP3A4 contributed to metabolism of Hf to Hfm after oral administration. Interestingly, the low plasma Hfm/Hf AUC ratios observed after fasted administration of Hf with KC were similar to the low values previously observed when Hf was administered postprandially (despite increased Hf absorption). The mechanism(s) by which postprandial administration of Hf led to a decrease in its metabolism are unknown, but based on the current data, could include inhibition of CYP3A4-mediated metabolism by components of the ingested meal. Other possibilities include a lipid-induced postprandial recruitment of intestinal lymphatic transport or avoidance of metabolism during transport through the enterocyte into the portal blood. Further studies are required to determine the relative contributions by which these different processes may decrease the presystemic metabolism of Hf.

UI MeSH Term Description Entries
D007654 Ketoconazole Broad spectrum antifungal agent used for long periods at high doses, especially in immunosuppressed patients. Nizoral,R-41400,R41,400,R41400,R 41400
D008297 Male Males
D010616 Phenanthrenes POLYCYCLIC AROMATIC HYDROCARBONS composed of three fused BENZENE rings.
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000962 Antimalarials Agents used in the treatment of malaria. They are usually classified on the basis of their action against plasmodia at different stages in their life cycle in the human. (From AMA, Drug Evaluations Annual, 1992, p1585) Anti-Malarial,Antimalarial,Antimalarial Agent,Antimalarial Drug,Anti-Malarials,Antimalarial Agents,Antimalarial Drugs,Agent, Antimalarial,Agents, Antimalarial,Anti Malarial,Anti Malarials,Drug, Antimalarial,Drugs, Antimalarial

Related Publications

S M Khoo, and J H Porter, and G A Edwards, and W N Charman
September 2002, Cardiovascular research,
S M Khoo, and J H Porter, and G A Edwards, and W N Charman
July 1994, Journal of chromatography. B, Biomedical applications,
S M Khoo, and J H Porter, and G A Edwards, and W N Charman
April 2006, Journal of pharmaceutical and biomedical analysis,
S M Khoo, and J H Porter, and G A Edwards, and W N Charman
December 2000, Biopharmaceutics & drug disposition,
S M Khoo, and J H Porter, and G A Edwards, and W N Charman
January 2007, Clinical pharmacokinetics,
S M Khoo, and J H Porter, and G A Edwards, and W N Charman
December 1983, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!