Retinal degeneration in retinitis pigmentosa and neuronal ceroid lipofuscinosis: An overview. 1999

D G Birch
Retina Foundation of the Southwest, Dallas, Texas, 75231, USA.

Retinal degeneration is an early consequence of the group of lysosomal storage diseases collectively referred to as the neuronal ceroid lipofuscinoses (NCLs). This review details specialized techniques that have evolved for retinal assessment in patients with hereditary retinal degeneration. A standard ERG protocol is described for assessing rod- and cone-mediated function. Standardization will be crucial for planning and implementing multicenter trials as rational therapeutic intervention becomes available. In recent years, there has been a dramatic increase in knowledge of the molecular biological bases of retinitis pigmentosa and allied retinal degenerations. Rather than attempting a comprehensive summary, this review stresses the concepts of genetic, allelic, and clinical heterogeneity, which have obvious parallels in the NCLs. Many of the mutations that cause retinal degeneration are in genes that encode photoreceptor cascade proteins; others are in genes that encode photoreceptor structural proteins. Recent advances in linking the retinal degeneration slow (RDS) and ATP-binding cassette transporter retina (ABCR) genes to a variety of disease phenotypes will be summarized. Clinical heterogeneity even among family members with the same mutation raises the possibility that modifying factors, either genetic or environmental, could influence the severity of the disease. Here, we focus on vitamin A and docosahexaenoic acid, two potential nutritional modifiers that have received considerable attention in recent years.

UI MeSH Term Description Entries
D009472 Neuronal Ceroid-Lipofuscinoses A group of severe neurodegenerative diseases characterized by intracellular accumulation of autofluorescent wax-like lipid materials (CEROID; LIPOFUSCIN) in neurons. There are several subtypes based on mutations of the various genes, time of disease onset, and severity of the neurological defects such as progressive DEMENTIA; SEIZURES; and visual failure. Batten Disease,Ceroid Lipofuscinosis, Neuronal, 4B, Autosomal Dominant,Ceroid-Lipofuscinosis, Neuronal,Jansky-Bielschowsky Disease,Kufs Disease,Santavuori-Haltia Disease,Spielmeyer-Vogt Disease,Adult Neuronal Ceroid Lipofuscinosis,Amaurotic Idiocy, Adult Type,Batten-Mayou Disease,Batten-Spielmeyer-Vogt Disease,CLN3-Related Neuronal Ceroid-Lipofuscinosis,CLN4A,CLN4B,Ceroid Lipofuscinosis, Neuronal 3, Juvenile,Ceroid Lipofuscinosis, Neuronal 4,Ceroid Lipofuscinosis, Neuronal, 3,Ceroid Lipofuscinosis, Neuronal, 4A, Autosomal Recessive,Ceroid Lipofuscinosis, Neuronal, Parry Type,Ceroid Storage Disease,Infantile Neuronal Ceroid Lipofuscinosis,Juvenile Batten Disease,Juvenile Cerebroretinal Degeneration,Juvenile Neuronal Ceroid Lipofuscinosis,Kuf's Disease,Kufs Disease Autosomal Recessive,Kufs Disease, Autosomal Dominant,Kufs Disease, Autosomal Recessive,Kufs Type Neuronal Ceroid Lipofuscinosis,Late-Infantile Neuronal Ceroid Lipofuscinosis,Lipofuscin Storage Disease,Lipofuscinosis, Neuronal Ceroid,Neuronal Ceroid Lipofuscinosis,Neuronal Ceroid Lipofuscinosis Juvenile Type,Neuronal Ceroid Lipofuscinosis, Adult,Neuronal Ceroid Lipofuscinosis, Adult Type,Neuronal Ceroid Lipofuscinosis, Infantile,Neuronal Ceroid Lipofuscinosis, Juvenile,Neuronal Ceroid Lipofuscinosis, Late Infantile,Neuronal Ceroid Lipofuscinosis, Late-Infantile,Neuronal Ceroid-Lipofuscinosis,Spielmeyer-Sjogren Disease,Vogt Spielmeyer Disease,Vogt-Spielmeyer Disease,Batten Disease, Juvenile,Batten Diseases, Juvenile,Batten Mayou Disease,Batten Spielmeyer Vogt Disease,CLN3 Related Neuronal Ceroid Lipofuscinosis,CLN3-Related Neuronal Ceroid-Lipofuscinoses,CLN4As,Cerebroretinal Degeneration, Juvenile,Cerebroretinal Degenerations, Juvenile,Ceroid Lipofuscinosis, Neuronal,Ceroid Storage Diseases,Ceroid-Lipofuscinosis, CLN3-Related Neuronal,Disease, Ceroid Storage,Disease, Juvenile Batten,Disease, Kuf's,Disease, Lipofuscin Storage,Disease, Spielmeyer-Sjogren,Disease, Vogt Spielmeyer,Disease, Vogt-Spielmeyer,Jansky Bielschowsky Disease,Juvenile Batten Diseases,Juvenile Cerebroretinal Degenerations,Kuf Disease,Lipofuscin Storage Diseases,Neuronal Ceroid Lipofuscinoses,Neuronal Ceroid-Lipofuscinoses, CLN3-Related,Neuronal Ceroid-Lipofuscinosis, CLN3-Related,Santavuori Haltia Disease,Spielmeyer Disease, Vogt,Spielmeyer Sjogren Disease,Spielmeyer Vogt Disease,Storage Disease, Ceroid,Storage Disease, Lipofuscin
D009755 Night Blindness Failure or imperfection of vision at night or in dim light, with good vision only on bright days. (Dorland, 27th ed) Nyctalopia,Blindness, Night
D012162 Retinal Degeneration A retrogressive pathological change in the retina, focal or generalized, caused by genetic defects, inflammation, trauma, vascular disease, or aging. Degeneration affecting predominantly the macula lutea of the retina is MACULAR DEGENERATION. (Newell, Ophthalmology: Principles and Concepts, 7th ed, p304) Degeneration, Retinal,Degenerations, Retinal,Retinal Degenerations
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D004596 Electroretinography Recording of electric potentials in the retina after stimulation by light. Electroretinographies
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012174 Retinitis Pigmentosa Hereditary, progressive degeneration of the retina due to death of ROD PHOTORECEPTORS initially and subsequent death of CONE PHOTORECEPTORS. It is characterized by deposition of pigment in the retina. Pigmentary Retinopathy,Tapetoretinal Degeneration,Pigmentary Retinopathies,Retinopathies, Pigmentary,Retinopathy, Pigmentary,Tapetoretinal Degenerations
D017948 Retinal Rod Photoreceptor Cells Photosensitive afferent neurons located in the peripheral retina, with their density increases radially away from the FOVEA CENTRALIS. Being much more sensitive to light than the RETINAL CONE CELLS, the rod cells are responsible for twilight vision (at scotopic intensities) as well as peripheral vision, but provide no color discrimination. Photoreceptors, Rod,Retinal Rod Cells,Rod Photoreceptors,Rods (Retina),Retinal Rod,Retinal Rod Cell,Retinal Rod Photoreceptor,Retinal Rod Photoreceptors,Rod Photoreceptor Cells,Cell, Retinal Rod,Cell, Rod Photoreceptor,Cells, Retinal Rod,Cells, Rod Photoreceptor,Photoreceptor Cell, Rod,Photoreceptor Cells, Rod,Photoreceptor, Retinal Rod,Photoreceptor, Rod,Photoreceptors, Retinal Rod,Retinal Rods,Rod (Retina),Rod Cell, Retinal,Rod Cells, Retinal,Rod Photoreceptor,Rod Photoreceptor Cell,Rod Photoreceptor, Retinal,Rod Photoreceptors, Retinal,Rod, Retinal,Rods, Retinal
D017962 alpha-Linolenic Acid A fatty acid that is found in plants and involved in the formation of prostaglandins. Linolenic Acid,Linolenate,alpha-Linolenic Acid, (E,E,E)-Isomer,alpha-Linolenic Acid, (E,E,Z)-Isomer,alpha-Linolenic Acid, (E,Z,E)-Isomer,alpha-Linolenic Acid, (E,Z,Z)-Isomer,alpha-Linolenic Acid, (Z,E,E)-Isomer,alpha-Linolenic Acid, (Z,E,Z)-Isomer,alpha-Linolenic Acid, (Z,Z,E)-Isomer,alpha-Linolenic Acid, Ammonium Salt,alpha-Linolenic Acid, Calcium Salt,alpha-Linolenic Acid, Lithium Salt,alpha-Linolenic Acid, Magnesium Salt,alpha-Linolenic Acid, Potassium Salt,alpha-Linolenic Acid, Sodium Salt,alpha-Linolenic Acid, Tin(2+) Salt,alpha-Linolenic Acid, Zinc Salt,alpha Linolenic Acid,alpha Linolenic Acid, Ammonium Salt,alpha Linolenic Acid, Calcium Salt,alpha Linolenic Acid, Lithium Salt,alpha Linolenic Acid, Magnesium Salt,alpha Linolenic Acid, Potassium Salt,alpha Linolenic Acid, Sodium Salt,alpha Linolenic Acid, Zinc Salt
Copied contents to your clipboard!