Extraocular muscle proprioceptors and proprioception. 1999

G L Ruskell
Department of Optometry and Visual Science, City University, London, UK.

Uncertainty of the roles of proprioception and efference copy in visual spatial perception persists. Proprioception has won back some support recently mainly on the evidence gained from physiological experiments in man, and rather than being mutually exclusive, the two mechanisms have been presented as collaborating. Another view supported by human and animal experiments states that current visual spatial perception may be served by efference copy whereas proprioception is responsible for temporal adaptations of the system. Certain characteristics of visuomotor cells of the monkey cortex can be explained assuming an efference copy input. Anatomical data from different sources are not easily reconciled. Disagreement about the nerve pathway of muscle afferents weakens arguments based on the results of open loop experiments involving nerve lesions in monkeys. The assumed presence of Golgi tendon organs in human extraocular muscles is no longer tenable and instead, palisade endings similar to those of cats and monkeys and other, irregular nerve endings are described. But man differs in having a limited and patchy distribution of neurotendonous endings and moreover, they may develop only after infancy. The allocation of a sensory function to palisade endings in myotendinous cylinders appears secure, at least in cats. Detailed examination of muscle spindles in man reveals anomalies of structure sufficient to question their capacity to provide useful proprioceptive information. One of the anomalies is the atrophy of intrafusal muscle fibres, present in both infant and adult muscles, and it is proposed that the redundant sensory endings, which do not appear to degenerate, search for new targets and may account for the random presence of tendon nerve endings. These observations place the role of proprioception in human extraocular muscles in jeopardy; they are unsupportive of the recent physiological studies and favour efference copy.

UI MeSH Term Description Entries
D009801 Oculomotor Muscles The muscles that move the eye. Included in this group are the medial rectus, lateral rectus, superior rectus, inferior rectus, inferior oblique, superior oblique, musculus orbitalis, and levator palpebrae superioris. Extraocular Muscles,Extraocular Rectus Muscles,Inferior Oblique Extraocular Muscle,Inferior Oblique Muscles,Levator Palpebrae Superioris,Musculus Orbitalis,Oblique Extraocular Muscles,Oblique Muscle, Inferior,Oblique Muscle, Superior,Oblique Muscles, Extraocular,Rectus Muscles, Extraocular,Superior Oblique Extraocular Muscle,Superior Oblique Muscle,Extraocular Muscle,Extraocular Muscle, Oblique,Extraocular Muscles, Oblique,Extraocular Oblique Muscle,Extraocular Oblique Muscles,Extraocular Rectus Muscle,Inferior Oblique Muscle,Muscle, Oculomotor,Muscles, Oculomotor,Oblique Extraocular Muscle,Oblique Muscle, Extraocular,Oblique Muscles, Inferior,Oblique Muscles, Superior,Oculomotor Muscle,Rectus Muscle, Extraocular,Superior Oblique Muscles
D011434 Proprioception Sensory functions that transduce stimuli received by proprioceptive receptors in joints, tendons, muscles, and the INNER EAR into neural impulses to be transmitted to the CENTRAL NERVOUS SYSTEM. Proprioception provides sense of stationary positions and movements of one's body parts, and is important in maintaining KINESTHESIA and POSTURAL BALANCE. Labyrinthine Sense,Position Sense,Posture Sense,Sense of Equilibrium,Vestibular Sense,Sense of Position,Equilibrium Sense,Sense, Labyrinthine,Sense, Position,Sense, Posture,Sense, Vestibular
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G L Ruskell
June 1963, Archives of ophthalmology (Chicago, Ill. : 1960),
G L Ruskell
January 1972, Bibliotheca ophthalmologica : supplementa ad ophthalmologica,
G L Ruskell
March 1995, Acta oto-laryngologica,
G L Ruskell
January 2024, Experimental physiology,
G L Ruskell
April 1995, Physiological reviews,
G L Ruskell
January 1974, Experimental neurology,
G L Ruskell
September 2000, The British journal of ophthalmology,
G L Ruskell
October 1971, Experimental neurology,
G L Ruskell
June 1989, Documenta ophthalmologica. Advances in ophthalmology,
Copied contents to your clipboard!