A Ca2+ binding cyclic peptide derived from the alpha-subunit of LFA-1: inhibitor of ICAM-1/LFA-1-mediated T-cell adhesion. 1999

S D Jois, and S A Tibbetts, and M A Chan, and S H Benedict, and T J Siahaan
Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence 66047, USA.

The objective of this work is to study the conformation of cyclic peptide (1), cyclo (1, 12) Pen1-Gly2-Val3-Asp4-Val5-Asp6-Gln7-+ ++Asp8-Gly9-Glu10-Thr11-Cys12, in the presence and absence of calcium. Cyclic peptide 1 is derived from the divalent cation binding sequence of the alpha-subunit of LFA-1. This peptide has been shown to inhibit ICAM-1-LFA-1 mediated T-cell adhesion. In order to understand the structural requirements for this biologically active peptide, its solution structure was studied by nuclear magnetic resonance (NMR), circular dichroism (CD) and molecular dynamics simulations. This cyclic peptide exhibits two types of possible conformations in solution. Structure I is a loop-turn-loop type of structure, which is suitable to bind cations such as EF hand proteins. Structure II is a more extended structure with beta-hairpin bend at Asp4-Val5-Asp6-Gln7. There is evidence that alterations in the conformation of LFA-1 upon binding to divalent cations cause LFA-1 to bind to ICAM-1. To understand this mechanism, the cation-binding properties of the peptide were studied by CD and NMR. CD studies indicated that the peptide binds to calcium and forms a 1 : 1 (peptide: calcium) complex at low calcium concentrations and multiple types of complexes at higher cation concentrations. NMR studies indicated that the conformation of the peptide is not significantly altered upon binding to calcium. The peptide can inhibit T-cell adhesion by directly binding to ICAM-1 or by disrupting the interaction of the alpha and beta-subunits of LFA-1 protein. This study will help us to understand the mechanism(s) of action of this peptide and will improve our ability to design a better inhibitor of T-cell adhesion.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002449 Cell Aggregation The phenomenon by which dissociated cells intermixed in vitro tend to group themselves with cells of their own type. Aggregation, Cell,Aggregations, Cell,Cell Aggregations

Related Publications

S D Jois, and S A Tibbetts, and M A Chan, and S H Benedict, and T J Siahaan
April 2002, Journal of biomolecular structure & dynamics,
S D Jois, and S A Tibbetts, and M A Chan, and S H Benedict, and T J Siahaan
April 2003, Journal of biomolecular structure & dynamics,
S D Jois, and S A Tibbetts, and M A Chan, and S H Benedict, and T J Siahaan
March 2004, Bioorganic & medicinal chemistry letters,
S D Jois, and S A Tibbetts, and M A Chan, and S H Benedict, and T J Siahaan
September 2007, Chemical biology & drug design,
S D Jois, and S A Tibbetts, and M A Chan, and S H Benedict, and T J Siahaan
February 2000, Journal of cell science,
S D Jois, and S A Tibbetts, and M A Chan, and S H Benedict, and T J Siahaan
February 1999, The Journal of antibiotics,
S D Jois, and S A Tibbetts, and M A Chan, and S H Benedict, and T J Siahaan
July 2006, Chemical biology & drug design,
S D Jois, and S A Tibbetts, and M A Chan, and S H Benedict, and T J Siahaan
September 1992, Journal of cell science,
S D Jois, and S A Tibbetts, and M A Chan, and S H Benedict, and T J Siahaan
November 1993, The Journal of cell biology,
S D Jois, and S A Tibbetts, and M A Chan, and S H Benedict, and T J Siahaan
October 2012, Archives of pharmacal research,
Copied contents to your clipboard!