Brain biopsy using high-field strength interventional magnetic resonance imaging. 1999

W A Hall, and A J Martin, and H Liu, and E S Nussbaum, and R E Maxwell, and C L Truwit
Department of Neurosurgery, University of Minnesota School of Medicine, Minneapolis, USA.

OBJECTIVE Lesions within the brain are commonly sampled using stereotactic techniques. The advent of interventional magnetic resonance imaging (MRI) now allows neurosurgeons to interactively investigate specific regions, with exquisite observational detail. We evaluated the safety and efficacy of this new surgical approach. METHODS Between January 1997 and June 1998, 35 brain biopsies were performed in a high-field strength interventional MRI unit. All biopsies were performed using MRI-compatible instrumentation. Interactive scanning was used to confirm accurate positioning of the biopsy needle within the region of interest. Intraoperative pathological examination of the biopsy specimens was performed to verify the presence of diagnostic tissue, and intra- and postoperative imaging was performed to exclude the presence of intraoperative hemorrhage. Recently, magnetic resonance spectroscopic targeting was used for six patients. RESULTS Diagnostic tissue was obtained in all 35 brain biopsies and was used in therapeutic decision-making. Histological diagnoses included 28 primary brain tumors (12 glioblastomas multiforme, 9 oligodendrogliomas, 2 anaplastic astrocytomas, 2 astrocytomas, 1 lymphoma, and 1 anaplastic oligodendroglioma), 1 melanoma brain metastasis, 1 cavernous sinus meningioma, 1 cerebral infarction, 1 demyelinating process, and 3 cases of radiation necrosis. In all cases, magnetic resonance spectroscopy was accurate in distinguishing recurrent tumors (five cases) from radiation necrosis (one case). No patient sustained clinically or radiologically significant hemorrhage, as determined by intraoperative imaging performed immediately after the biopsy. One patient (3%) suffered transient hemiparesis after a pontine biopsy for investigation of a brain stem glioma. Another patient developed scalp cellulitis, with possible intracranial extension, 3 weeks after the biopsy; this condition was effectively treated with antibiotic therapy. Three patients were discharged on the day of the biopsy. CONCLUSIONS Interventional 1.5-T MRI is a safe and effective method for evaluating lesions of the brain. Magnetic resonance spectroscopic targeting is likely to augment the diagnostic yield of brain biopsies.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001927 Brain Diseases Pathologic conditions affecting the BRAIN, which is composed of the intracranial components of the CENTRAL NERVOUS SYSTEM. This includes (but is not limited to) the CEREBRAL CORTEX; intracranial white matter; BASAL GANGLIA; THALAMUS; HYPOTHALAMUS; BRAIN STEM; and CEREBELLUM. Intracranial Central Nervous System Disorders,Brain Disorders,CNS Disorders, Intracranial,Central Nervous System Disorders, Intracranial,Central Nervous System Intracranial Disorders,Encephalon Diseases,Encephalopathy,Intracranial CNS Disorders,Brain Disease,Brain Disorder,CNS Disorder, Intracranial,Encephalon Disease,Encephalopathies,Intracranial CNS Disorder
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D003362 Cost-Benefit Analysis A method of comparing the cost of a program with its expected benefits in dollars (or other currency). The benefit-to-cost ratio is a measure of total return expected per unit of money spent. This analysis generally excludes consideration of factors that are not measured ultimately in economic terms. In contrast a cost effectiveness in general compares cost with qualitative outcomes. Cost and Benefit,Cost-Benefit Data,Benefits and Costs,Cost Benefit,Cost Benefit Analysis,Cost-Utility Analysis,Costs and Benefits,Economic Evaluation,Marginal Analysis,Analyses, Cost Benefit,Analysis, Cost Benefit,Analysis, Cost-Benefit,Analysis, Cost-Utility,Analysis, Marginal,Benefit and Cost,Cost Benefit Analyses,Cost Benefit Data,Cost Utility Analysis,Cost-Benefit Analyses,Cost-Utility Analyses,Data, Cost-Benefit,Economic Evaluations,Evaluation, Economic,Marginal Analyses
D005260 Female Females

Related Publications

W A Hall, and A J Martin, and H Liu, and E S Nussbaum, and R E Maxwell, and C L Truwit
November 2005, Magnetic resonance in medicine,
W A Hall, and A J Martin, and H Liu, and E S Nussbaum, and R E Maxwell, and C L Truwit
January 2010, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine,
W A Hall, and A J Martin, and H Liu, and E S Nussbaum, and R E Maxwell, and C L Truwit
May 2003, Archives of disease in childhood. Fetal and neonatal edition,
W A Hall, and A J Martin, and H Liu, and E S Nussbaum, and R E Maxwell, and C L Truwit
August 2013, Neurosurgery,
W A Hall, and A J Martin, and H Liu, and E S Nussbaum, and R E Maxwell, and C L Truwit
April 1984, Radiology,
W A Hall, and A J Martin, and H Liu, and E S Nussbaum, and R E Maxwell, and C L Truwit
June 1994, Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes,
W A Hall, and A J Martin, and H Liu, and E S Nussbaum, and R E Maxwell, and C L Truwit
March 2015, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine,
W A Hall, and A J Martin, and H Liu, and E S Nussbaum, and R E Maxwell, and C L Truwit
November 1984, Radiology,
W A Hall, and A J Martin, and H Liu, and E S Nussbaum, and R E Maxwell, and C L Truwit
July 1985, Alabama medicine : journal of the Medical Association of the State of Alabama,
W A Hall, and A J Martin, and H Liu, and E S Nussbaum, and R E Maxwell, and C L Truwit
February 2009, Neuroimaging clinics of North America,
Copied contents to your clipboard!