Serotonin in golden hamster testes: testicular levels, immunolocalization and role during sexual development and photoperiodic regression-recrudescence transition. 1999

M B Frungieri, and S I Gonzalez-Calvar, and M Rubio, and M Ozu, and L Lustig, and R S Calandra
Instituto de BiologĂ­a y Medicina Experimental, UBA, Buenos Aires, Argentina.

Serotonin (5-HT) is found in the gonads and accessory reproductive organs of several species. The golden (Syrian) hamster is a seasonal breeder. Exposure of male adult hamsters to short days for 14 weeks results in a severe gonadal regression, while after a photoinhibition period of 22 weeks a spontaneous testicular recrudescence occurs. The aim of this study was to investigate the presence of 5-HT and its major metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the gonads of golden hamsters, its immunolocation and its physiological role in the testis. The influence of age and photoperiod was also analyzed. Hamsters of 23, 36, 46, 60 and 90 days of age were kept in long photoperiod (LP: 14:10 h light/dark), and adult animals were exposed either to LP or to short photoperiod (SP: 6:18 h light/dark) for 14 and 22 weeks. Testicular parenchyma and capsule levels of 5-HT and 5-HIAA increased significantly at ages of 36 and 60-90 days, but decreased markedly during the exposure of adult hamsters to SP for 14 and 22 weeks. Mast cells were found exclusively in the testicular capsule. The testicular number of mast cells increased concomitantly with age, but decreased in adult hamsters exposed to SP. Mast and Leydig cells presented 5-HT-positive immunoreactivity. During sexual maturation as well as during the transfer of adult hamsters from LP to SP, the 5-HIAA/5-HT ratio showed the highest values in active adult animals, indicating that the increase in testicular 5-HT levels in adulthood is accompanied by an augment in 5-HT turnover. In vitro basal and hCG-stimulated testosterone production was significantly inhibited in presence of physiological concentrations of 5-HT. In conclusion, the present studies demonstrate the existence of 5-HT in mast cells and Leydig cells of hamster testes, as well as describe an inhibitory action of this neurotransmitter on gonadal testosterone production. Furthermore, the age-dependent and photoperiodic-related changes detected in testicular 5-HT levels suggest that this neurotransmitter might act as an important local modulator of the action of gonadotropins on steroidogenesis during sexual development and during the photoperiodic regression-recrudescence transition in the golden hamster.

UI MeSH Term Description Entries
D007985 Leydig Cells Steroid-producing cells in the interstitial tissue of the TESTIS. They are under the regulation of PITUITARY HORMONES; LUTEINIZING HORMONE; or interstitial cell-stimulating hormone. TESTOSTERONE is the major androgen (ANDROGENS) produced. Interstitial Cells, Testicular,Leydig Cell,Testicular Interstitial Cell,Testicular Interstitial Cells,Cell, Leydig,Cell, Testicular Interstitial,Cells, Leydig,Cells, Testicular Interstitial,Interstitial Cell, Testicular
D008297 Male Males
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D012098 Reproduction The total process by which organisms produce offspring. (Stedman, 25th ed) Human Reproductive Index,Human Reproductive Indexes,Reproductive Period,Human Reproductive Indices,Index, Human Reproductive,Indexes, Human Reproductive,Indices, Human Reproductive,Period, Reproductive,Periods, Reproductive,Reproductive Index, Human,Reproductive Indices, Human,Reproductive Periods
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D006063 Chorionic Gonadotropin A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN). Chorionic Gonadotropin, Human,HCG (Human Chorionic Gonadotropin),Biogonadil,Choriogonadotropin,Choriogonin,Chorulon,Gonabion,Human Chorionic Gonadotropin,Pregnyl,Gonadotropin, Chorionic,Gonadotropin, Human Chorionic
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006897 Hydroxyindoleacetic Acid 5-HIAA,5-Hydroxy-3-Indoleacetic Acid,5-Hydroxyindolamine Acetic Acid,5 Hydroxy 3 Indoleacetic Acid,5 Hydroxyindolamine Acetic Acid,Acetic Acid, 5-Hydroxyindolamine,Acid, 5-Hydroxy-3-Indoleacetic,Acid, 5-Hydroxyindolamine Acetic,Acid, Hydroxyindoleacetic
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

M B Frungieri, and S I Gonzalez-Calvar, and M Rubio, and M Ozu, and L Lustig, and R S Calandra
January 1980, Endocrinology,
M B Frungieri, and S I Gonzalez-Calvar, and M Rubio, and M Ozu, and L Lustig, and R S Calandra
November 1977, Biology of reproduction,
M B Frungieri, and S I Gonzalez-Calvar, and M Rubio, and M Ozu, and L Lustig, and R S Calandra
June 1978, Biology of reproduction,
M B Frungieri, and S I Gonzalez-Calvar, and M Rubio, and M Ozu, and L Lustig, and R S Calandra
September 1993, Biology of reproduction,
M B Frungieri, and S I Gonzalez-Calvar, and M Rubio, and M Ozu, and L Lustig, and R S Calandra
March 1984, Endocrinology,
M B Frungieri, and S I Gonzalez-Calvar, and M Rubio, and M Ozu, and L Lustig, and R S Calandra
October 1981, Biology of reproduction,
M B Frungieri, and S I Gonzalez-Calvar, and M Rubio, and M Ozu, and L Lustig, and R S Calandra
April 1982, Biology of reproduction,
M B Frungieri, and S I Gonzalez-Calvar, and M Rubio, and M Ozu, and L Lustig, and R S Calandra
January 2002, Journal of andrology,
M B Frungieri, and S I Gonzalez-Calvar, and M Rubio, and M Ozu, and L Lustig, and R S Calandra
January 1987, Journal of andrology,
M B Frungieri, and S I Gonzalez-Calvar, and M Rubio, and M Ozu, and L Lustig, and R S Calandra
May 1979, Biology of reproduction,
Copied contents to your clipboard!