Voltage-activated calcium currents in rat retinal ganglion cells in situ: changes during prenatal and postnatal development. 1999

S Schmid, and E Guenther
Department of Pathophysiology of Vision and Neuro-Ophthalmology, Division of Experimental Ophthalmology, University Eye Hospital, Röntgenweg 11, 72076 Tübingen, Germany.

Voltage-activated calcium currents (ICa) are one way by which calcium influx into neurons is mediated. To investigate changes in kinetic properties of ICa during neuronal development and to correlate possible kinetic changes with specific differentiation processes, the ICa of retinal ganglion cells (RGCs) was recorded with the perforated patch-clamp technique in rat retinal slices and in whole mounts at different prenatal and postnatal stages. ICa density increased between embryonic day (E) 20 and the adult stage, paralleled by a shift in activation of the omega-conotoxin GVIA-sensitive ICa toward more negative membrane potentials. Furthermore, developmental alterations were observed in ICa inactivation rate during a 120 msec test pulse and in steady-state inactivation of ICa. The most striking feature in ICa kinetics was a transient slowing of calcium current deactivation, which peaked at postnatal day (P)3-5 and affected all ICa subtypes. Although the shift in activation and the decreased inactivation rate of ICa can be explained by differential regulation of distinct calcium channel subtypes, it is more likely that a more general alteration of the cells' functional state was the underlying factor in alterations in steady-state inactivation and current deactivation of ICa. Alterations in the omega-conotoxin GVIA-sensitive and the toxin-resistant currents temporarily coincide with dendritic differentiation, and it is tempting to speculate about their role in network formation in the inner retina. In contrast, alterations in steady-state inactivation and current deactivation may be involved in the regulation of RGC survival, because they occur during the period of programmed cell death in the ganglion cell layer. In conclusion, distinct time windows of alterations in calcium channel properties were found, and this study has provided a basis for performing functional assays to clarify in detail the developmental process to which these alterations are related.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011914 Rats, Inbred BN An inbred strain of rat that is widely used in a variety of research areas such as the study of ASTHMA; CARCINOGENESIS; AGING; and LEUKEMIA. Rats, Inbred Brown Norway,Rats, BN,BN Rat,BN Rat, Inbred,BN Rats,BN Rats, Inbred,Inbred BN Rat,Inbred BN Rats,Rat, BN,Rat, Inbred BN
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004095 Dihydropyridines Pyridine moieties which are partially saturated by the addition of two hydrogen atoms in any position.
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell

Related Publications

S Schmid, and E Guenther
August 2006, Journal of neuroscience research,
S Schmid, and E Guenther
January 1994, Brain research,
S Schmid, and E Guenther
January 2023, Frontiers in cellular neuroscience,
S Schmid, and E Guenther
November 2000, Brain research. Developmental brain research,
S Schmid, and E Guenther
January 1991, The Japanese journal of physiology,
S Schmid, and E Guenther
August 2018, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
Copied contents to your clipboard!