Active lucifer yellow secretion in renal proximal tubule: evidence for organic anion transport system crossover. 1999

R Masereeuw, and M M Moons, and B H Toomey, and F G Russel, and D S Miller
Department of Pharmacology, Faculty of Medical Sciences, University of Nijmegen, Nijmegen, The Netherlands. R.Masereeuw@farm.kun.nl

Recent studies show that organic anion secretion in renal proximal tubule is mediated by distinct sodium-dependent and sodium-independent transport systems. Here we investigated the possibility that organic anions entering the cells on one system can exit into the lumen on a transporter associated with the other system. In isolated rat kidneys perfused with 10 microM lucifer yellow (LY, a fluorescent organic anion) plus 100 micrograms/ml inulin, the LY-to-inulin clearance ratio averaged 1.6 +/- 0.2, indicating net tubular secretion. Probenecid significantly reduced both LY clearance and LY accumulation in kidney tissue. In intact killifish proximal tubules, confocal microscopy was used to measure steady-state LY uptake into cells and secretion into the tubular lumen. Probenecid, p-aminohippurate, and ouabain nearly abolished both uptake and secretion. To this point, the data indicated that LY was handled by the sodium-dependent and ouabain-sensitive organic anion transport system. However, leukotriene C4, an inhibitor of the luminal step for the sodium-independent and ouabain-insensitive organic anion system, reduced luminal secretion of LY by 50%. Leukotriene C4 did not affect cellular accumulation of LY or the transport of fluorescein on the sodium-dependent system. A similar inhibition pattern was found for another fluorescent organic anion, a mercapturic acid derivative of monochlorobimane. Thus, both organic anions entered the cells on the basolateral transporter for the classical, sodium-dependent system, but about half of the transport into the lumen was handled by the luminal carrier for the sodium-independent system, which is most likely the multidrug resistance-associated protein. This is the first demonstration that xenobiotics can enter renal proximal tubule cells on the carrier associated with one organic anion transport system and exit into the tubular lumen on multiple carriers, one of which is associated with a second system.

UI MeSH Term Description Entries
D007444 Inulin A starch found in the tubers and roots of many plants. Since it is hydrolyzable to FRUCTOSE, it is classified as a fructosan. It has been used in physiologic investigation for determination of the rate of glomerular function.
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D007695 Killifishes Small oviparous fishes mostly in the family Cyprinodontidae but also some members of families Aplocheilidae, Fundulidae, Profundulidae, and Rivulidae. Some killifishes are used in mosquito control. Killifishes are vertebrate model organisms in various fields, e.g., environmental toxicology and neurobiology, because of their short lifespans, ease of maintenance and large number of eggs produced. Cyprinodon,Cyprinodontidae,Pupfishes
D008297 Male Males
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D010130 p-Aminohippuric Acid The glycine amide of 4-aminobenzoic acid. Its sodium salt is used as a diagnostic aid to measure effective renal plasma flow (ERPF) and excretory capacity. 4-Aminohippuric Acid,para-Aminohippuric Acid,Aminohippurate Sodium,Aminohippuric Acid,Nephrotest,Sodium Para-Aminohippurate,p-Aminohippurate,4 Aminohippuric Acid,Para-Aminohippurate, Sodium,Sodium Para Aminohippurate,Sodium, Aminohippurate,p Aminohippurate,p Aminohippuric Acid,para Aminohippuric Acid
D011339 Probenecid The prototypical uricosuric agent. It inhibits the renal excretion of organic anions and reduces tubular reabsorption of urate. Probenecid has also been used to treat patients with renal impairment, and, because it reduces the renal tubular excretion of other drugs, has been used as an adjunct to antibacterial therapy. Benecid,Benemid,Benuryl,Pro-Cid,Probecid,Probenecid Weimer
D012076 Renal Agents Drugs used for their effects on the kidneys' regulation of body fluid composition and volume. The most commonly used are the diuretics. Also included are drugs used for their antidiuretic and uricosuric actions, for their effects on the kidneys' clearance of other drugs, and for diagnosis of renal function. Agents, Renal
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier

Related Publications

R Masereeuw, and M M Moons, and B H Toomey, and F G Russel, and D S Miller
December 1997, The Journal of experimental zoology,
R Masereeuw, and M M Moons, and B H Toomey, and F G Russel, and D S Miller
September 1984, The American journal of physiology,
R Masereeuw, and M M Moons, and B H Toomey, and F G Russel, and D S Miller
January 1998, The American journal of physiology,
R Masereeuw, and M M Moons, and B H Toomey, and F G Russel, and D S Miller
July 1990, The Journal of pharmacology and experimental therapeutics,
R Masereeuw, and M M Moons, and B H Toomey, and F G Russel, and D S Miller
December 1996, The American journal of physiology,
R Masereeuw, and M M Moons, and B H Toomey, and F G Russel, and D S Miller
January 1996, Kidney & blood pressure research,
R Masereeuw, and M M Moons, and B H Toomey, and F G Russel, and D S Miller
September 1996, The American journal of physiology,
R Masereeuw, and M M Moons, and B H Toomey, and F G Russel, and D S Miller
April 1988, The American journal of physiology,
R Masereeuw, and M M Moons, and B H Toomey, and F G Russel, and D S Miller
April 1982, Tsitologiia,
R Masereeuw, and M M Moons, and B H Toomey, and F G Russel, and D S Miller
February 1981, The American journal of physiology,
Copied contents to your clipboard!