tRNA synthetase mutants of Escherichia coli K-12 are resistant to the gyrase inhibitor novobiocin. 1999

M Jovanovic, and M Lilic, and R Janjusevic, and G Jovanovic, and D J Savic, and J Milija
Institute of Molecular Genetics and Genetic Engineering, 11001 Belgrade, Yugoslavia.

In previous studies we demonstrated that mutations in the genes cysB, cysE, and cls (nov) affect resistance of Escherichia coli to novobiocin (J. Rakonjac, M. Milic, and D. J. Savic, Mol. Gen. Genet. 228:307-311, 1991; R. Ivanisevic, M. Milic, D. Ajdic, J. Rakonjac, and D. J. Savic, J. Bacteriol. 177:1766-1771, 1995). In this work we expand this list with mutations in rpoN (the gene for RNA polymerase subunit sigma54) and the tRNA synthetase genes alaS, argS, ileS, and leuS. Similarly to resistance to the penicillin antibiotic mecillinam, resistance to novobiocin of tRNA synthetase mutants appears to depend upon the RelA-mediated stringent response. However, at this point the overlapping pathways of mecillinam and novobiocin resistance diverge. Under conditions of stringent response induction, either by the presence of tRNA synthetase mutations or by constitutive production of RelA protein, inactivation of the cls gene diminishes resistance to novobiocin but not to mecillinam.

UI MeSH Term Description Entries
D007533 Isoleucine-tRNA Ligase An enzyme that activates isoleucine with its specific transfer RNA. EC 6.1.1.5. Isoleucyl T RNA Synthetase,Isoleucyl- tRNA Synthetase ILS1,Isoleucyl-tRNA Synthetase 1,Isoleucyl-tRNA Synthetase ILES1,Ile-tRNA Ligase,Isoleucyl-tRNA Synthetase,1, Isoleucyl-tRNA Synthetase,ILES1, Isoleucyl-tRNA Synthetase,Ile tRNA Ligase,Isoleucine tRNA Ligase,Isoleucyl tRNA Synthetase,Isoleucyl tRNA Synthetase 1,Isoleucyl tRNA Synthetase ILES1,Isoleucyl tRNA Synthetase ILS1,Ligase, Ile-tRNA,Ligase, Isoleucine-tRNA,Synthetase 1, Isoleucyl-tRNA,Synthetase ILES1, Isoleucyl-tRNA,Synthetase, Isoleucyl-tRNA
D007935 Leucine-tRNA Ligase An enzyme that activates leucine with its specific transfer RNA. EC 6.1.1.4. Leucyl T RNA Synthetase,Leu-tRNA Ligase,Leucine-tRNA Synthetase,Leu tRNA Ligase,Leucine tRNA Ligase,Leucine tRNA Synthetase,Ligase, Leu-tRNA,Ligase, Leucine-tRNA,Synthetase, Leucine-tRNA
D008025 Ligases A class of enzymes that catalyze the formation of a bond between two substrate molecules, coupled with the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. (Dorland, 28th ed) EC 6. Ligase,Synthetases,Synthetase
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009675 Novobiocin An antibiotic compound derived from Streptomyces niveus. It has a chemical structure similar to coumarin. Novobiocin binds to DNA gyrase, and blocks adenosine triphosphatase (ATPase) activity. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p189) Crystallinic Acid,Streptonivicin,Novobiocin Calcium,Novobiocin Sodium,Novobiocin, Monosodium Salt,Calcium, Novobiocin,Monosodium Salt Novobiocin,Sodium, Novobiocin
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

M Jovanovic, and M Lilic, and R Janjusevic, and G Jovanovic, and D J Savic, and J Milija
February 1972, Biochimica et biophysica acta,
M Jovanovic, and M Lilic, and R Janjusevic, and G Jovanovic, and D J Savic, and J Milija
February 1972, Biochimica et biophysica acta,
M Jovanovic, and M Lilic, and R Janjusevic, and G Jovanovic, and D J Savic, and J Milija
August 1969, Molecular & general genetics : MGG,
M Jovanovic, and M Lilic, and R Janjusevic, and G Jovanovic, and D J Savic, and J Milija
November 1987, Journal of bacteriology,
M Jovanovic, and M Lilic, and R Janjusevic, and G Jovanovic, and D J Savic, and J Milija
July 1976, Journal of bacteriology,
M Jovanovic, and M Lilic, and R Janjusevic, and G Jovanovic, and D J Savic, and J Milija
September 1974, Soviet genetics,
M Jovanovic, and M Lilic, and R Janjusevic, and G Jovanovic, and D J Savic, and J Milija
January 1975, Genetika,
M Jovanovic, and M Lilic, and R Janjusevic, and G Jovanovic, and D J Savic, and J Milija
June 1984, The Journal of antimicrobial chemotherapy,
M Jovanovic, and M Lilic, and R Janjusevic, and G Jovanovic, and D J Savic, and J Milija
April 1975, Journal of bacteriology,
M Jovanovic, and M Lilic, and R Janjusevic, and G Jovanovic, and D J Savic, and J Milija
October 1975, Journal of bacteriology,
Copied contents to your clipboard!