Gastric effects of methylnaltrexone on mu, kappa, and delta opioid agonists induced brainstem unitary responses. 1999

C S Yuan, and J F Foss
Department of Anesthesia and Critical Care, The Pritzker School of Medicine, The University of Chicago, IL 60637, USA. cyuan@midway.uchicago.edu

In this study, we evaluated the gastric effects of methylnaltrexone, an opioid receptor antagonist that does not cross the blood-brain barrier in vivo, on mu, kappa and delta opioid agonists induced brainstem unitary responses in an in vitro neonatal rat brainstem-gastric preparation. Single units in the medial subnucleus of the nucleus tractus solitarius (NTS), responding to electrical stimulation of subdiaphragmatic vagal fibers, were recorded. Selective opioid receptor agonists and antagonists were applied only to the gastric compartment of the bath chamber and thus, the brainstem functions of the preparation were not affected by the drugs. The peripheral gastric effects of a mu opioid receptor agonist, DAMGO, and a kappa opioid receptor agonist, U-50,488H, were evaluated on 58 tonic units that received the subdiaphragmatic vagal inputs. For approximately 78% of the units observed, DAMGO (1.0 microM) and U-50,488H (1.0 microM) induced a concentration-dependent inhibition of 62.1+/-9.3% (mean +/- SE) and 49.2+/-6.5% of the control level of the NTS neuronal activity, respectively. Methylnaltrexone competitively antagonized the DAMGO-induced brainstem neuronal effects. Methylnaltrexone at an 18.8-fold higher concentration also reversed U-50,488H-induced NTS neuronal responses. Naloxone, a non-selective opioid receptor antagonist, reversed the inhibitory effects of DAMGO and U-50,488H at much lower concentrations (3.8% and 0.5%, respectively) compared to methylnaltrexone. Only 18% of the NTS neurons evaluated showed inhibitory responses to a delta receptor agonist, DPDPE, (19.7+/-5.0% at 10 microM), and this inhibition could not be reversed by methylnaltrexone in the concentration range we tested. In addition, when methylnaltrexone (1.0 microM) alone was applied to the gastric compartment, there was an activation (8.5+/-2.1%) of the NTS neurons receiving subdiaphragmatic vagal inputs, suggesting an endogenous gastric opioid action in the modulation of brainstem neuronal activities.

UI MeSH Term Description Entries
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009271 Naltrexone Derivative of noroxymorphone that is the N-cyclopropylmethyl congener of NALOXONE. It is a narcotic antagonist that is effective orally, longer lasting and more potent than naloxone, and has been proposed for the treatment of heroin addiction. The FDA has approved naltrexone for the treatment of alcohol dependence. Antaxone,Celupan,EN-1639A,Nalorex,Naltrexone Hydrochloride,Nemexin,ReVia,Trexan,EN 1639A,EN1639A
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004745 Enkephalins One of the three major families of endogenous opioid peptides. The enkephalins are pentapeptides that are widespread in the central and peripheral nervous systems and in the adrenal medulla. Enkephalin
D000644 Quaternary Ammonium Compounds Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN Quaternary Ammonium Compound,Ammonium Compound, Quaternary,Ammonium Compounds, Quaternary,Compound, Quaternary Ammonium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

C S Yuan, and J F Foss
April 1986, European journal of pharmacology,
C S Yuan, and J F Foss
December 1995, Journal of autonomic pharmacology,
Copied contents to your clipboard!