Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from peppermint. 1999

B M Lange, and R Croteau
Institute of Biological Chemistry, and Department of Biochemistry and Biophysics, Washington State University, Pullman, Washington 99164-6340, USA.

Two distinct pathways are utilized by plants for the biosynthesis of isopentenyl diphosphate, the universal precursor of isoprenoids. The classical acetate/mevalonate pathway operates in the cytosol, whereas plastidial isoprenoids originate via a novel mevalonate-independent route that involves a transketolase-catalyzed condensation of pyruvate and D-glyceraldehyde-3-phosphate to yield 1-deoxy-D-xylulose-5-phosphate as the first intermediate. Based on in vivo feeding experiments, rearrangement and reduction of deoxyxylulose phosphate have been proposed to give rise to 2-C-methyl-D-erythritol-4-phosphate as the second intermediate of this pyruvate/glyceraldehyde-3-phosphate pathway (1-3). The cloning of an Escherichia coli gene encoding an enzyme capable of converting 1-deoxy-D-xylulose-5-phosphate to 2-C-erythritol-4-phosphate was recently reported (4). A cloning strategy was developed for isolating the gene encoding a plant homolog of this enzyme from peppermint (Mentha x piperita), and the identity of the resulting cDNA was confirmed by heterologous expression in E. coli. Unlike the microbial reductoisomerase, the plant ortholog encodes a preprotein bearing an N-terminal plastidial transit peptide that directs the enzyme to plastids where the mevalonate-independent pathway operates in plants. The peppermint gene comprises an open reading frame of 1425 nucleotides which, when the plastidial targeting sequence is excluded, encodes a deduced enzyme of approximately 400 amino acid residues with a mature size of about 43.5 kDa.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010428 Pentosephosphates
D004896 Erythritol A four-carbon sugar that is found in algae, fungi, and lichens. It is twice as sweet as sucrose and can be used as a coronary vasodilator.
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013403 Sugar Phosphates Phosphates, Sugar
D013729 Terpenes A class of compounds composed of repeating 5-carbon units of HEMITERPENES. Isoprenoid,Terpene,Terpenoid,Isoprenoids,Terpenoids
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein

Related Publications

B M Lange, and R Croteau
June 1999, Annual review of plant physiology and plant molecular biology,
B M Lange, and R Croteau
August 2001, The Plant journal : for cell and molecular biology,
B M Lange, and R Croteau
November 2012, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica,
B M Lange, and R Croteau
December 2004, Bioorganic chemistry,
B M Lange, and R Croteau
June 2001, The Journal of biological chemistry,
Copied contents to your clipboard!