New antipseudomonal penicillin, PC-904: affinity to penicillin-binding proteins and inhibition of the enzyme cross-linking peptidoglycan. 1978

H Noguchi, and M Matsuhashi, and M Takaoka, and S Mitsuhashi

The mechanism of action of a new antipseudomonal penicillin, PC-904, was studied with respect to its binding affinities to penicillin-binding proteins (PBPs) and its inhibitory activities on cross-linking enzymes of peptidoglycan synthesis in vitro. PC-904 showed especially high affinity (compared with that of penicillin G) to Escherichia coli PBP-3. It also had high affinities to PBP-2 and -1Bs and low affinities to PBP-1A, -4, -5, and -6. Similar results were obtained with Pseudomonas aeruginosa, in which this antibiotic showed very high affinity (compared with that of penicillin G) to PBP-3, -1A (presumably corresponding to E. coli PBP-1Bs), and -2; there was especially high affinity to PBP-3 and much less affinity to PBP-1B (presumably corresponding to E. coli PBP-1A). These results are compatible with morphological observations that at concentrations near its minimal inhibitory concentration or less, this antibiotic induced the formation of filamentous cells of E. coli and P. aeruginosa. At higher concentrations or after prolonged incubation, it induced lysis of the cells. The remarkably high affinity of PC-904 to pseudomonal PBP-3, -1A, and -2 may partly explain the potent antipseudomonal activity of this antibiotic. In E. coli, the concentration of PC-904 required to inhibit the cross-linking reaction in enzymatic peptidoglycan synthesis, presumably carried out by PBP-1Bs, was as low as the inhibitory concentrations of penicillin G, ampicillin, and carbenicillin.

UI MeSH Term Description Entries
D010457 Peptidoglycan A structural polymer of the bacterial cell envelope consisting of sugars and amino acids which is responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. Murein,Pseudomurein
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000667 Ampicillin Semi-synthetic derivative of penicillin that functions as an orally active broad-spectrum antibiotic. Penicillin, Aminobenzyl,Amcill,Aminobenzylpenicillin,Ampicillin Sodium,Ampicillin Trihydrate,Antibiotic KS-R1,Omnipen,Pentrexyl,Polycillin,Ukapen,Aminobenzyl Penicillin,Antibiotic KS R1,KS-R1, Antibiotic,Sodium, Ampicillin,Trihydrate, Ampicillin
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

H Noguchi, and M Matsuhashi, and M Takaoka, and S Mitsuhashi
November 1978, Antimicrobial agents and chemotherapy,
H Noguchi, and M Matsuhashi, and M Takaoka, and S Mitsuhashi
January 1978, Antimicrobial agents and chemotherapy,
H Noguchi, and M Matsuhashi, and M Takaoka, and S Mitsuhashi
February 1976, Antimicrobial agents and chemotherapy,
H Noguchi, and M Matsuhashi, and M Takaoka, and S Mitsuhashi
July 2017, Journal of the American Chemical Society,
H Noguchi, and M Matsuhashi, and M Takaoka, and S Mitsuhashi
December 1984, Microbiological sciences,
H Noguchi, and M Matsuhashi, and M Takaoka, and S Mitsuhashi
January 1982, Seikagaku. The Journal of Japanese Biochemical Society,
H Noguchi, and M Matsuhashi, and M Takaoka, and S Mitsuhashi
February 1997, International journal of antimicrobial agents,
H Noguchi, and M Matsuhashi, and M Takaoka, and S Mitsuhashi
March 2008, FEMS microbiology reviews,
H Noguchi, and M Matsuhashi, and M Takaoka, and S Mitsuhashi
July 1978, The Japanese journal of antibiotics,
Copied contents to your clipboard!