Peroxisomal disorders: clinical, biochemical, and molecular aspects. 1999

R J Wanders
University of Amsterdam, Academic Medical Centre, Dept. Pediatrics, Emma Children's Hospital and Clinical Biochemistry, The Netherlands. wanders@amc.uva.nl

Peroxisomes are subcellular organelles catalyzing a number of indispensable functions in cellular metabolism. The importance of peroxisomes in man is stressed by the existence of an expanding group of genetic diseases in which there is an impairment in one or more peroxisomal functions. Much has been learned in recent years about these functions and many of the enzymes involved have been characterized, purified and their cDNAs cloned. This has allowed resolution of the enzymatic and molecular basis of many of the single peroxisomal enzyme deficiencies. Similarly, the molecular basis of the peroxisome biogenesis disorders is also being resolved rapidly thanks to the successful use of CHO as well as yeast mutants. In this paper we will provide an overview of the peroxisomal disorders with particular emphasis on their clinical, biochemical and molecular characteristics.

UI MeSH Term Description Entries
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018901 Peroxisomal Disorders A heterogeneous group of inherited metabolic disorders marked by absent or dysfunctional PEROXISOMES. Peroxisomal enzymatic abnormalities may be single or multiple. Biosynthetic peroxisomal pathways are compromised, including the ability to synthesize ether lipids and to oxidize long-chain fatty acid precursors. Diseases in this category include ZELLWEGER SYNDROME; INFANTILE REFSUM DISEASE; rhizomelic chondrodysplasia (CHONDRODYSPLASIA PUNCTATA, RHIZOMELIC); hyperpipecolic acidemia; neonatal adrenoleukodystrophy; and ADRENOLEUKODYSTROPHY (X-linked). Neurologic dysfunction is a prominent feature of most peroxisomal disorders. Adrenoleukodystrophy, Neonatal,Hyperpipecolic Acidemia,Adrenoleukodystrophy, Autosomal Neonatal Form,Adrenoleukodystrophy, Autosomal, Neonatal Form,Hyperpipecolatemia,Neonatal Adrenoleukodystrophy,Peroxisomal Dysfunction, General,Peroxisomal Dysfunction, Multiple,Peroxisomal Dysfunction, Single,Acidemia, Hyperpipecolic,Acidemias, Hyperpipecolic,Adrenoleukodystrophies, Neonatal,Dysfunction, General Peroxisomal,Dysfunction, Multiple Peroxisomal,Dysfunction, Single Peroxisomal,Dysfunctions, General Peroxisomal,Dysfunctions, Multiple Peroxisomal,Dysfunctions, Single Peroxisomal,General Peroxisomal Dysfunction,General Peroxisomal Dysfunctions,Hyperpipecolic Acidemias,Multiple Peroxisomal Dysfunction,Multiple Peroxisomal Dysfunctions,Neonatal Adrenoleukodystrophies,Peroxisomal Disorder,Peroxisomal Dysfunctions, General,Peroxisomal Dysfunctions, Multiple,Peroxisomal Dysfunctions, Single,Single Peroxisomal Dysfunction,Single Peroxisomal Dysfunctions

Related Publications

R J Wanders
June 1993, American journal of diseases of children (1960),
R J Wanders
December 1996, Annals of the New York Academy of Sciences,
R J Wanders
November 1988, No to hattatsu = Brain and development,
R J Wanders
December 1988, American journal of diseases of children (1960),
R J Wanders
March 1991, Minerva pediatrica,
R J Wanders
June 1990, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
R J Wanders
April 2007, Journal of inherited metabolic disease,
R J Wanders
September 2012, Biochimica et biophysica acta,
R J Wanders
February 1994, Genetika,
Copied contents to your clipboard!