P2u receptor-mediated release of endothelium-derived relaxing factor/nitric oxide and endothelium-derived hyperpolarizing factor from cerebrovascular endothelium in rats. 1999

J You, and T D Johnson, and S P Marrelli, and J V Mombouli, and R M Bryan
Department of Anesthesiology, Graduate Program in Cardiovascular Sciences of the DeBakey Heart Center, Baylor College of Medicine, Houston, Texas, USA.

OBJECTIVE Stimulation of P2u purinoceptors by UTP on endothelium dilates the rat middle cerebral artery (MCA) through the release of endothelium-derived relaxing factor/nitric oxide (EDRF/NO) and an unknown relaxing factor. The purpose of this study was to determine whether this unknown relaxing factor is endothelium-derived hyperpolarizing factor (EDHF). METHODS Rat MCAs were isolated, cannulated, pressurized, and luminally perfused. UTP was added to the luminal perfusate to elicit dilations. RESULTS Resting outside diameter of the MCAs in one study was 209+/-7 micrometer (n=10). The MCAs showed concentration-dependent dilations with UTP administration. Inhibition of NO synthase with NG-nitro-L-arginine methyl ester (L-NAME) (1 micromol/L to 1 mmol/L) did not diminish the maximum response to UTP but did shift the concentration-response curve to the right. Scavenging NO with hemoglobin (1 or 10 micromol/L) or inhibition of guanylate cyclase with ODQ (1 or 10 micromol/L) had effects on the UTP-mediated dilations similar to those of L-NAME. In the presence of L-NAME, dilations induced by 10 micromol/L UTP were accompanied by 13+/-2 mV (P<0.009) hyperpolarization of the vascular smooth muscle membrane potential (-28+/-2 to -41+/-1 mV). Iberiotoxin (100 nmol/L), blocker of the large-conductance calcium-activated K channels, sometimes blocked the dilation, but its effects were variable. Charybdotoxin (100 nmol/L), also a blocker of the large-conductance calcium-activated K channels, abolished the L-NAME-insensitive component of the dilation to UTP. CONCLUSIONS Stimulation of P2u purinoceptors on the endothelium of the rat MCA released EDHF, in addition to EDRF/NO, and dilated the rat MCA by opening an atypical calcium-activated K channel.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010069 Oxadiazoles Compounds containing five-membered heteroaromatic rings containing two carbons, two nitrogens, and one oxygen atom which exist in various regioisomeric forms. Oxadiazole
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011810 Quinoxalines Quinoxaline
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion

Related Publications

J You, and T D Johnson, and S P Marrelli, and J V Mombouli, and R M Bryan
December 1996, Circulation,
J You, and T D Johnson, and S P Marrelli, and J V Mombouli, and R M Bryan
October 1992, Canadian journal of anaesthesia = Journal canadien d'anesthesie,
J You, and T D Johnson, and S P Marrelli, and J V Mombouli, and R M Bryan
April 1995, Sheng li ke xue jin zhan [Progress in physiology],
J You, and T D Johnson, and S P Marrelli, and J V Mombouli, and R M Bryan
October 1997, Prostaglandins, leukotrienes, and essential fatty acids,
J You, and T D Johnson, and S P Marrelli, and J V Mombouli, and R M Bryan
November 1997, Arquivos brasileiros de cardiologia,
J You, and T D Johnson, and S P Marrelli, and J V Mombouli, and R M Bryan
January 1987, Nature,
J You, and T D Johnson, and S P Marrelli, and J V Mombouli, and R M Bryan
January 2004, Clinical and experimental pharmacology & physiology,
J You, and T D Johnson, and S P Marrelli, and J V Mombouli, and R M Bryan
December 1988, The Journal of pharmacology and experimental therapeutics,
J You, and T D Johnson, and S P Marrelli, and J V Mombouli, and R M Bryan
February 1998, British journal of pharmacology,
J You, and T D Johnson, and S P Marrelli, and J V Mombouli, and R M Bryan
February 1988, Clinical and experimental pharmacology & physiology,
Copied contents to your clipboard!