Calcium and photosynthetic oxygen evolution in cyanobacteria. 1978

R G Piccioni, and D C Mauzerall

Calcium activation of oxygen evolution from French-press preparations of Phormidium luridum is largely reversible upon removal of added Ca(2+). Activation occurs via a first-order binding with a dissociation constant of 2.8 mM. An 8-fold increase in oxygen evolution rate observed upon Ca(2+) addition is accounted for by a 4-fold increase in the number of active photosynthetic units, and a doubling of turnover rate. While both Ca(2+) and Mg(2+) stimulate turnover, unit activation is Ca(2+) specific. Under optimal conditions, 30% of the units functioning in the intact cell can be recovered in the Ca(2+) -activated preparation. The Ca(2+) requirement of P. luridum preparations is not relieved by proton-carrying uncouplers, or by rate-saturating concentrations of the Hill acceptor, ferricyanide. Taken together with the reported stimulation by Ca(2+) of oxygen evolution in the presence of DCMU (Piccioni, R.G. and Mauzerall, D.C. (1976) Biochim. Biophys. Acta 423, 605--609) these observations strongly suggest a site of Ca(2+) action within Photosystem II. The pronounced specificity of the Ca(2+) requirement appears in preparations of other cyanobacteria (Anabaena flos-aquae and Anacystis nidulans) but not in the eucaryote Chlorella vulgaris. While milder cell-disruption methods bring about some Ca(2+) dependence in P. luridum, French-press treatment is required for maximal expression of Ca(2+) -specific effects. French-press breakage causes a release of endogenous Ca(2+) from cells, supporting the view that added Ca(2+) restores oxygen evolution by satisfying a physiological requirement for the cation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005292 Ferricyanides Inorganic salts of the hypothetical acid, H3Fe(CN)6.
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

R G Piccioni, and D C Mauzerall
April 2003, Research in microbiology,
R G Piccioni, and D C Mauzerall
October 1992, Biochimica et biophysica acta,
R G Piccioni, and D C Mauzerall
May 1964, Science (New York, N.Y.),
R G Piccioni, and D C Mauzerall
July 1972, Biophysical journal,
R G Piccioni, and D C Mauzerall
September 1965, Biochimica et biophysica acta,
R G Piccioni, and D C Mauzerall
June 1984, Biochemical and biophysical research communications,
R G Piccioni, and D C Mauzerall
May 1978, Biochimica et biophysica acta,
R G Piccioni, and D C Mauzerall
April 1998, Current opinion in chemical biology,
R G Piccioni, and D C Mauzerall
December 1993, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!