Genetic control of retinal ganglion cell projections. 1978

J H LaVail, and R A Nixon, and R L Sidman

We have assessed the effects of 15 pigmentation mutations on the development of retinal ganglion cell projections in mice in two ways: (1) by analyzing the pattern of innervation of the ipsilateral lateral geniculate nucleus as mapped in autoradiograms of brains of animals killed 12 days after intravitreal injection of 3H-proline into one eye and (2) by determining the ratio of axonally transported radioactive protein in the contralateral and ipsilateral optic tracts after similar intravitreal injections. Analysis of the ratio of transported protein in the two optic tracts provides a new and useful assay of the degree of decussation in experimental animals. The effects of the mutations on eye pigmentation, whole eye melanin content and relative tyrosinase activity also were examined. The degree of ipsilateral innervation generally correlates with the degree of pigmentation of the retinal pigment epithelium and with tyrosinase activity. However, discrepancies have been found in ch and ce mutants. In these animals the pigment epithelium is well pigmented, and the area of ipsilateral innervation in the lateral geniculate nucleus is extensive, despite a high ratio of label in contralateral to ipsilateral optic tracts and low tyrosinase activity. Furthermore, mice heterozygous for the c2J allele have pigmentation and optic projections that are normal even though tyrosinase is reduced to 40% of normal. The few anomalous results suggest that alternative or additional factors may control optic axon projections.

UI MeSH Term Description Entries
D008543 Melanins Insoluble polymers of TYROSINE derivatives found in and causing darkness in skin (SKIN PIGMENTATION), hair, and feathers providing protection against SUNBURN induced by SUNLIGHT. CAROTENES contribute yellow and red coloration. Allomelanins,Melanin,Phaeomelanins
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006200 Hair Color Color of hair or fur. Color, Hair,Colors, Hair,Hair Colors
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012168 Retinal Pigments Photosensitive protein complexes of varied light absorption properties which are expressed in the PHOTORECEPTOR CELLS. They are OPSINS conjugated with VITAMIN A-based chromophores. Chromophores capture photons of light, leading to the activation of opsins and a biochemical cascade that ultimately excites the photoreceptor cells. Retinal Photoreceptor Pigment,Retinal Pigment,Visual Pigment,Visual Pigments,Retinal Photoreceptor Pigments,Photoreceptor Pigment, Retinal,Photoreceptor Pigments, Retinal,Pigment, Retinal,Pigment, Retinal Photoreceptor,Pigment, Visual,Pigments, Retinal,Pigments, Retinal Photoreceptor,Pigments, Visual

Related Publications

J H LaVail, and R A Nixon, and R L Sidman
May 2021, Cellular and molecular life sciences : CMLS,
J H LaVail, and R A Nixon, and R L Sidman
July 1985, The Journal of comparative neurology,
J H LaVail, and R A Nixon, and R L Sidman
January 1996, Perspectives on developmental neurobiology,
J H LaVail, and R A Nixon, and R L Sidman
March 2006, Development (Cambridge, England),
J H LaVail, and R A Nixon, and R L Sidman
November 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J H LaVail, and R A Nixon, and R L Sidman
April 1995, The Journal of comparative neurology,
J H LaVail, and R A Nixon, and R L Sidman
December 2012, Neuroscience,
J H LaVail, and R A Nixon, and R L Sidman
March 1977, Journal of neurophysiology,
J H LaVail, and R A Nixon, and R L Sidman
December 2015, Developmental neurobiology,
Copied contents to your clipboard!