The physiological effects of monocular deprivation and their reversal in the monkey's visual cortex. 1978

C Blakemore, and L J Garey, and F Vital-Durand

1. 1127 single units were recorded during oblique penetrations in area 17 of one normal, three monocularly deprived and four reverse sutured monkeys. 2. In all animals most cells outside layer IV c were orientation-selective, and preferred orientation usually shifted from cell to cell in a regular progressive sequence. 3. The presence in layer IV c of non-oriented, monocularly driven units, organized in alternating right-eye and left-eye 'stripes' (LeVay, Hubel & Wiesel, 1975) was confirmed. 4. Early monocular deprivation (2--5 1/2 weeks) caused a strong shift of ocular dominance towards the non-deprived eye. However, even outside layer IV c, neural background and some isolated cells could still be driven from the deprived eye in regularly spaced, narrow columnar regions. In layer IV c the non-deprived eye's stripes were almost three times wider, on average, than the deprived. 5. Later monocular deprivation (11--16 months) had no detectable influence on layer IV c but seemed to cause a small shift in ocular dominance outside IV c. Deprivation for 6 1/4 months in an adult had no such effect. 6. After early reverse suturing (at 5 1/2 weeks) the originally deprived eye gained dominance over cells outside layer IV c just as complete as that originally exercised by the eye that was first non-deprived. 7. The later reverse suturing was delayed, the less effective was recapture by the originally deprived eye. Reversal at 8 weeks led to roughly equal numbers of cells being dominated by each eye; fewer cells became dominated by the newly open eye after reverse suturing at 9 weeks and most of them were non-oriented; reversal at 38 1/2 weeks had no effect. 8. Binocular cells, though rare in reverse sutured animals, always had very similar preferred orientations in the two eyes. The columnar sequences of preferred orientation were not interrupted at the borders of ocular dominance columns. 9. Even within layer IV c there was evidence for re-expansion of physiologically determined ocular dominance stripes. After early reverse suture, stripes for the two eyes became roughly equal in width. Possible mechanisms for these changes are discussed.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009799 Ocular Physiological Phenomena Processes and properties of the EYE as a whole or of any of its parts. Ocular Physiologic Processes,Ocular Physiological Processes,Ocular Physiology,Eye Physiology,Ocular Physiologic Process,Ocular Physiological Concepts,Ocular Physiological Phenomenon,Ocular Physiological Process,Physiology of the Eye,Physiology, Ocular,Visual Physiology,Concept, Ocular Physiological,Concepts, Ocular Physiological,Ocular Physiological Concept,Phenomena, Ocular Physiological,Phenomenon, Ocular Physiological,Physiologic Process, Ocular,Physiologic Processes, Ocular,Physiological Concept, Ocular,Physiological Concepts, Ocular,Physiological Process, Ocular,Physiological Processes, Ocular,Physiology, Eye,Physiology, Visual,Process, Ocular Physiologic,Process, Ocular Physiological,Processes, Ocular Physiologic,Processes, Ocular Physiological
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D012683 Sensory Deprivation The absence or restriction of the usual external sensory stimuli to which the individual responds. Deprivation, Sensory,Deprivations, Sensory,Sensory Deprivations
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

C Blakemore, and L J Garey, and F Vital-Durand
September 1976, The Journal of physiology,
C Blakemore, and L J Garey, and F Vital-Durand
November 1981, Proceedings of the Royal Society of London. Series B, Biological sciences,
C Blakemore, and L J Garey, and F Vital-Durand
January 1971, Transactions - American Academy of Ophthalmology and Otolaryngology. American Academy of Ophthalmology and Otolaryngology,
C Blakemore, and L J Garey, and F Vital-Durand
March 1978, The Journal of comparative neurology,
C Blakemore, and L J Garey, and F Vital-Durand
March 1986, Brain research,
C Blakemore, and L J Garey, and F Vital-Durand
November 1978, The Journal of physiology,
C Blakemore, and L J Garey, and F Vital-Durand
January 2007, The European journal of neuroscience,
C Blakemore, and L J Garey, and F Vital-Durand
January 1974, Experimental brain research,
C Blakemore, and L J Garey, and F Vital-Durand
December 2011, Cerebral cortex (New York, N.Y. : 1991),
Copied contents to your clipboard!