Gamma-tubulin complexes and their interaction with microtubule-organizing centers. 1999

C Wiese, and Y Zheng
Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, MD 21210, USA. wiese@mail1.ciwemb.edu

Gamma-tubulin is as ubiquitous in eukaryotes as alpha- and beta-tubulin. Rather than forming part of the microtubule wall, however, gamma-tubulin is involved in microtubule nucleation. Although gamma-tubulin concentrates at microtubule-organizing centers, it also exists in a cytoplasmic complex whose size and complexity depends on the organism and cell type. In the past year, progress in understanding the functions of gamma-tubulin was made on two fronts: identifying the proteins that interact with gamma-tubulin and identifying the proteins that interact with the gamma-tubulin complex to tether it to the microtubule-organizing center.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014404 Tubulin A microtubule subunit protein found in large quantities in mammalian brain. It has also been isolated from SPERM FLAGELLUM; CILIA; and other sources. Structurally, the protein is a dimer with a molecular weight of approximately 120,000 and a sedimentation coefficient of 5.8S. It binds to COLCHICINE; VINCRISTINE; and VINBLASTINE. alpha-Tubulin,beta-Tubulin,delta-Tubulin,epsilon-Tubulin,gamma-Tubulin,alpha Tubulin,beta Tubulin,delta Tubulin,epsilon Tubulin,gamma Tubulin
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D018385 Centrosome An organelle near the nucleus of the cell consisting (in animals and organisms that have CILIA) of two CENTRIOLES, and the surrounding pericentriolar material. It functions as the primary MICROTUBULE-ORGANIZING CENTER during the eukaryotic CELL CYCLE (https://doi.org/10.1038/nrm2180). Pericentriolar Material,Pericentriolar Matrix,Pericentriolar Region,Centrosomes,Material, Pericentriolar,Matrix, Pericentriolar,Pericentriolar Materials,Pericentriolar Matrices,Pericentriolar Regions,Region, Pericentriolar
D020285 Cryoelectron Microscopy Electron microscopy involving rapid freezing of the samples. The imaging of frozen-hydrated molecules and organelles permits the best possible resolution closest to the living state, free of chemical fixatives or stains. Electron Cryomicroscopy,Cryo-electron Microscopy,Cryo electron Microscopy,Cryo-electron Microscopies,Cryoelectron Microscopies,Cryomicroscopies, Electron,Cryomicroscopy, Electron,Electron Cryomicroscopies,Microscopies, Cryo-electron,Microscopies, Cryoelectron,Microscopy, Cryo-electron,Microscopy, Cryoelectron

Related Publications

C Wiese, and Y Zheng
February 1994, Current opinion in cell biology,
C Wiese, and Y Zheng
April 2001, Current opinion in structural biology,
C Wiese, and Y Zheng
February 2007, Current opinion in cell biology,
C Wiese, and Y Zheng
January 1985, Annual review of cell biology,
C Wiese, and Y Zheng
October 2017, Annual review of cell and developmental biology,
C Wiese, and Y Zheng
November 2009, The Journal of cell biology,
Copied contents to your clipboard!