Poly (ADP-ribose) polymerase, nitric oxide and cell death. 1999

A A Pieper, and A Verma, and J Zhang, and S H Snyder
Department of Neuroscience, The Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.

Poly (ADP-ribose) polymerase (PARP) is a nuclear enzyme that is activated by DNA strand breaks to participate in DNA repair. Excessive activation of PARP, however, can deplete tissue stores of nicotinamide adenine dinucleotide (NAD), the PARP substrate which, with the resultant depletion of ATP, leads to cell death. In many cases of CNS damage, for example vascular stroke, nitric oxide release is a key stimulus to DNA damage and PARP activation. In conditions as diverse as focal cerebral ischaemia, myocardial infarction and toxin-induced diabetes, PARP inhibitors and PARP gene deletion afford dramatic protection from tissue damage. Accordingly, PARP inhibitors could provide novel therapeutic approaches in a wide range of clinical disorders.

UI MeSH Term Description Entries
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000067856 Poly(ADP-ribose) Polymerase Inhibitors Chemicals and drugs that inhibit the action of POLY(ADP-RIBOSE)POLYMERASES. Inhibitors of Poly(ADP-ribose) Polymerase,PARP Inhibitor,Poly(ADP-Ribose) Polymerase Inhibitor,Poly(ADP-ribosylation) Inhibitor,Inhibitors of Poly(ADP-ribose) Polymerases,PARP Inhibitors,Poly(ADP-ribosylation) Inhibitors,Inhibitor, PARP,Inhibitors, PARP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

A A Pieper, and A Verma, and J Zhang, and S H Snyder
August 1994, Science (New York, N.Y.),
A A Pieper, and A Verma, and J Zhang, and S H Snyder
June 2002, Experimental dermatology,
A A Pieper, and A Verma, and J Zhang, and S H Snyder
July 2005, Pharmacological research,
A A Pieper, and A Verma, and J Zhang, and S H Snyder
February 1997, FEBS letters,
A A Pieper, and A Verma, and J Zhang, and S H Snyder
December 2003, Free radical biology & medicine,
A A Pieper, and A Verma, and J Zhang, and S H Snyder
March 2017, Seminars in cell & developmental biology,
A A Pieper, and A Verma, and J Zhang, and S H Snyder
January 2002, International journal of experimental diabetes research,
A A Pieper, and A Verma, and J Zhang, and S H Snyder
June 1997, Analytical biochemistry,
A A Pieper, and A Verma, and J Zhang, and S H Snyder
December 1999, Brain research,
A A Pieper, and A Verma, and J Zhang, and S H Snyder
June 2017, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Copied contents to your clipboard!