Nitric oxide sensitizes ovarian tumor cells to Fas-induced apoptosis. 1999

H J Garbán, and B Bonavida
Department of Microbiology, Immunology, and Molecular Genetics, and Jonsson Comprehensive Cancer Center, UCLA School of Medicine, 10833 Le Conte Avenue, Los Angeles, California 90095-1747, USA.

Fas-mediated apoptosis represents one major mechanism by which tumor cells can be eliminated by activated cytotoxic immune lymphocytes. Previously, we have reported that interferon-gamma (IFN-gamma) sensitizes human ovarian carcinoma cell lines to Fas-mediated apoptosis. Furthermore, IFN-gamma, together with many other proinflammatory cytokines (TNF-alpha, IL-1beta, LPS, etc.), can stimulate the induction of inducible nitric oxide synthase (iNOS) and the generation of nitric oxide (NO). In this study, we examined whether nitric oxide is a mediator of IFN-gamma-induced sensitization of human ovarian carcinoma cell lines (A2780 and AD10) to Fas-mediated apoptosis and whether NO regulates the expression of the Fas receptor. Treatment of quiescent A2780 and AD10 ovarian carcinoma cells with IFN-gamma alone induced the expression of iNOS mRNA as examined by RT-PCR. There was accumulation of nitrite in the culture medium of IFN-gamma-treated cells, suggesting the generation of NOx. Like IFN-gamma, the use of exogenous sources of NO (S-nitroso-N-acetylpenicillamine (SNAP)) mimicked the sensitization of both cell lines to anti-Fas cytotoxic antibody (CH11) by IFN-gamma. Endogenously produced NO, by IFN-gamma pretreatment or exogenous nitrodonors, resulted in the upregulation of Fas receptor mRNA and protein expression. Blocking iNOS activity by NG-monomethyl-l-arginine (l-NMA) significantly reduced the sensitization, Fas mRNA, and protein expression observed with IFN-gamma pretreatment of the tumor cells. These findings demonstrate that sensitization of human ovarian carcinoma cell lines to Fas-mediated apoptosis by IFN-gamma can be due, in part, to the induction of iNOS and the subsequent upregulation of Fas gene expression by reactive nitrogen intermediates. Thus, the sensitivity of tumor cells to Fas-L-mediated cytotoxic immune lymphocytes can be regulated by the induction of NO or intermediates.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D018124 Receptors, Tumor Necrosis Factor Cell surface receptors that bind TUMOR NECROSIS FACTORS and trigger changes which influence the behavior of cells. Cachectin Receptors,TNF Receptors,Tumor Necrosis Factor Receptors,Receptors, Cachectin,Receptors, TNF,TNF Receptor,Tumor Necrosis Factor Receptor,Receptor, TNF
D019001 Nitric Oxide Synthase An NADPH-dependent enzyme that catalyzes the conversion of L-ARGININE and OXYGEN to produce CITRULLINE and NITRIC OXIDE. NO Synthase,Nitric-Oxide Synthase,Nitric-Oxide Synthetase,Nitric Oxide Synthetase,Oxide Synthase, Nitric,Synthase, Nitric Oxide
D019014 fas Receptor A tumor necrosis factor receptor subtype found in a variety of tissues and on activated LYMPHOCYTES. It has specificity for FAS LIGAND and plays a role in regulation of peripheral immune responses and APOPTOSIS. Multiple isoforms of the protein exist due to multiple ALTERNATIVE SPLICING. The activated receptor signals via a conserved death domain that associates with specific TNF RECEPTOR-ASSOCIATED FACTORS in the CYTOPLASM. Mutations in the CD95 gene are associated with cases of autoimmune lymphoproliferative syndrome. APO-1 Antigen,Antigens, CD95,CD95 Antigens,Receptors, fas,Tumor Necrosis Factor Receptor Superfamily, Member 6,fas Antigens,fas Receptors,CD95 Antigen,Fas Cell Surface Death Receptor,TNFRSF6 Receptor,fas Antigen,APO 1 Antigen,Receptor, TNFRSF6,Receptor, fas

Related Publications

H J Garbán, and B Bonavida
May 2002, The Journal of biological chemistry,
H J Garbán, and B Bonavida
September 1997, The Journal of biological chemistry,
H J Garbán, and B Bonavida
January 2001, Advances in cancer research,
H J Garbán, and B Bonavida
January 2014, Gynecologic oncology,
Copied contents to your clipboard!