Rapid collapse and slow structural reorganisation during the refolding of bovine alpha-lactalbumin. 1999

V Forge, and R T Wijesinha, and J Balbach, and K Brew, and C V Robinson, and C Redfield, and C M Dobson
Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK.

The refolding of bovine alpha-lactalbumin (BLA) from its chemically denatured state in 6 M GuHCl has been investigated by a variety of complementary biophysical approaches. CD experiments indicate that the species formed in the early stages of refolding of the apo-protein have at least 85 % of the alpha-helical content of the native state, and kinetic NMR experiments show that they possess near-native compactness. Hydrogen exchange measurements using mass spectrometry and NMR indicate that persistent structure in these transient species is located predominantly in the alpha-domain of the native protein and is similar to that present in the partially folded A-state formed by the protein at low pH. The extent of the exchange protection is, however, small, and there is no evidence for the existence of well-defined discrete kinetic intermediates of the type populated in the refolding of the structurally homologous c-type lysozymes. Rather, both mass spectrometric and NMR data indicate that the rate-determining transition from the compact partially structured (molten globule) species to the native state is highly cooperative. The data show that folding in the presence of Ca2+ is similar to that in its absence, although the rate is increased by more than two orders of magnitude. Sequential mixing experiments monitored by fluorescence spectroscopy indicate that this slower folding is not the result of the accumulation of kinetically trapped species. Rather, the data are consistent with a model in which binding of Ca2+ stabilizes native-like contacts in the partially folded species and reduces the barriers for the conversion of the protein to its native state. Taken together the results indicate that folding of BLA, in the presence of its four disulphide bonds, corresponds to one of the limiting cases of protein folding in which rapid collapse to a globule with a native-like fold is followed by a search for native-like side-chain contacts that enable efficient conversion to the close packed native structure.

UI MeSH Term Description Entries
D007768 Lactalbumin A major protein fraction of milk obtained from the WHEY. alpha-Lactalbumin,alpha-Lactalbumin A,alpha-Lactalbumin B,alpha-Lactalbumin C,alpha Lactalbumin,alpha Lactalbumin A,alpha Lactalbumin B,alpha Lactalbumin C
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular

Related Publications

V Forge, and R T Wijesinha, and J Balbach, and K Brew, and C V Robinson, and C Redfield, and C M Dobson
April 1993, Biochemistry,
V Forge, and R T Wijesinha, and J Balbach, and K Brew, and C V Robinson, and C Redfield, and C M Dobson
January 1996, Folding & design,
V Forge, and R T Wijesinha, and J Balbach, and K Brew, and C V Robinson, and C Redfield, and C M Dobson
April 1993, Biochemistry,
V Forge, and R T Wijesinha, and J Balbach, and K Brew, and C V Robinson, and C Redfield, and C M Dobson
January 1970, The Journal of biological chemistry,
V Forge, and R T Wijesinha, and J Balbach, and K Brew, and C V Robinson, and C Redfield, and C M Dobson
March 2002, The Journal of biological chemistry,
V Forge, and R T Wijesinha, and J Balbach, and K Brew, and C V Robinson, and C Redfield, and C M Dobson
January 2000, Nature structural biology,
V Forge, and R T Wijesinha, and J Balbach, and K Brew, and C V Robinson, and C Redfield, and C M Dobson
September 1970, The Journal of biological chemistry,
V Forge, and R T Wijesinha, and J Balbach, and K Brew, and C V Robinson, and C Redfield, and C M Dobson
October 1980, Biochemistry,
V Forge, and R T Wijesinha, and J Balbach, and K Brew, and C V Robinson, and C Redfield, and C M Dobson
September 1970, The Biochemical journal,
V Forge, and R T Wijesinha, and J Balbach, and K Brew, and C V Robinson, and C Redfield, and C M Dobson
March 1964, Biochimica et biophysica acta,
Copied contents to your clipboard!