Staphylococcal toxic shock syndrome toxin-1 inhibits monocyte apoptosis. 1999

D L Bratton, and K R May, and J M Kailey, and D E Doherty, and D Y Leung
Division of Allergy-Immunology, Department of Pediatrics, and the Department of Medicine, National Jewish Medical and Research Center, Denver, CO, USA.

BACKGROUND Chronic atopic dermatitis (AD) lesions are associated with colonization by exotoxin-producing Staphylococcus aureus. Evidence suggests that cytokine production in AD, particularly of GM-CSF, prolongs survival of both peripheral blood monocytes and dermal monocyte-macrophages, the predominate inflammatory cell in lesions caused by chronic AD. OBJECTIVE We sought to determine whether the staphylococcal exotoxin, toxic shock syndrome toxin-1 (TSST-1), could stimulate prosurvival cytokine production in monocytes and thereby inhibit apoptosis. METHODS Cultures of peripheral blood monocytes from normal donors and subjects with AD were incubated with various concentrations of TSST-1, and the incidence of apoptosis was assessed by examining cytospin preparations and the appearance of hypodiploid DNA in the flow cytometer. Culture supernatants were analyzed for GM-CSF, IL-1beta, and TNF-alpha by ELISA. RESULTS TSST-1, in a concentration-dependent manner starting at 0.1 pg/mL, significantly inhibited monocyte apoptosis and resulted in the production of the prosurvival cytokines GM-CSF, IL-1beta, and TNF-alpha. In coculture conditions with conditioned media from TSST-1-stimulated monocytes, with or without neutralizing antibody to the various cytokines, the data show GM-CSF production was responsible for the inhibition of apoptosis. CONCLUSIONS The data strongly suggest that staphylococcal exotoxins known to colonize skin lesions on patients with chronic AD may induce the production of GM-CSF, resulting in inhibition of monocyte-macrophage apoptosis, and thereby contribute to the chronicity of this inflammatory disease.

UI MeSH Term Description Entries
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D003876 Dermatitis, Atopic A chronic inflammatory genetically determined disease of the skin marked by increased ability to form reagin (IgE), with increased susceptibility to allergic rhinitis and asthma, and hereditary disposition to a lowered threshold for pruritus. It is manifested by lichenification, excoriation, and crusting, mainly on the flexural surfaces of the elbow and knee. In infants it is known as infantile eczema. Eczema, Atopic,Eczema, Infantile,Neurodermatitis, Atopic,Neurodermatitis, Disseminated,Atopic Dermatitis,Atopic Eczema,Atopic Neurodermatitis,Disseminated Neurodermatitis,Infantile Eczema
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001427 Bacterial Toxins Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases. Bacterial Toxin,Toxins, Bacterial,Toxin, Bacterial
D013211 Staphylococcus aureus Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D018089 Superantigens Microbial antigens that have in common an extremely potent activating effect on T-cells that bear a specific variable region. Superantigens cross-link the variable region with class II MHC proteins regardless of the peptide binding in the T-cell receptor's pocket. The result is a transient expansion and subsequent death and anergy of the T-cells with the appropriate variable regions. Superantigen

Related Publications

D L Bratton, and K R May, and J M Kailey, and D E Doherty, and D Y Leung
May 1996, Proceedings of the National Academy of Sciences of the United States of America,
D L Bratton, and K R May, and J M Kailey, and D E Doherty, and D Y Leung
January 2007, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
D L Bratton, and K R May, and J M Kailey, and D E Doherty, and D Y Leung
March 1986, Journal of clinical microbiology,
D L Bratton, and K R May, and J M Kailey, and D E Doherty, and D Y Leung
January 1988, Methods in enzymology,
D L Bratton, and K R May, and J M Kailey, and D E Doherty, and D Y Leung
November 1984, Infection and immunity,
D L Bratton, and K R May, and J M Kailey, and D E Doherty, and D Y Leung
January 1989, Reviews of infectious diseases,
D L Bratton, and K R May, and J M Kailey, and D E Doherty, and D Y Leung
December 1981, The New England journal of medicine,
D L Bratton, and K R May, and J M Kailey, and D E Doherty, and D Y Leung
October 1991, The Journal of infectious diseases,
D L Bratton, and K R May, and J M Kailey, and D E Doherty, and D Y Leung
June 1993, Epidemiology and infection,
D L Bratton, and K R May, and J M Kailey, and D E Doherty, and D Y Leung
October 1993, Journal of clinical microbiology,
Copied contents to your clipboard!