Genetic influence on normal variability of maximum expiratory flow-volume curves. 1976

S F Man, and N Zamel

To determine the importance of genetic influence on the variability of maximum expiratory flow-volume (MEFV) curves in normal individuals, MEFV curves breathing air and a mixture of 80% helium and 20% oxygen (He-O2), lung volumes, specific airway conductance, and closing capacity (CC) were obtained in 10 pairs of identical and 6 pairs of nonidentical twins, all nonsmokers and asymptomatic. For a given pair of identical twins, MEFV curves on air were more similar than those of a pair of nonidentical twins (P less than 0.02). The intrapair differences of identical twins were smaller than nonidentical twins of maximum expiratory flow (Vmax) at 60% of total lung capacity (TLC) on air (P less than 0.001) and on He-O2 (P less than 0.01). However, intrapair differences of Vmax at 40% TLC and CC were not significantly different in the two groups. Since Vmax at 60% TLC on air and He-O2 are dependent on the geometry of large airways these findings are suggestive that the geometry of large airways may be related to genetic factors. The relationship of the geometry of the peripheral airways and genetic factors has not been defined.

UI MeSH Term Description Entries
D008176 Lung Volume Measurements Measurement of the amount of air that the lungs may contain at various points in the respiratory cycle. Lung Capacities,Lung Volumes,Capacity, Lung,Lung Capacity,Lung Volume,Lung Volume Measurement,Measurement, Lung Volume,Volume, Lung
D008297 Male Males
D008448 Maximal Expiratory Flow Rate The airflow rate measured during the first liter expired after the first 200 ml have been exhausted during a FORCED VITAL CAPACITY determination. Common abbreviations are MEFR, FEF 200-1200, and FEF 0.2-1.2. Forced Expiratory Flow 0.2-1.2,Forced Expiratory Flow 200-1200,Flow Rate, Maximal Expiratory,MEFR,Forced Expiratory Flow 0.2 1.2,Forced Expiratory Flow 200 1200
D008449 Maximal Expiratory Flow-Volume Curves Curves depicting MAXIMAL EXPIRATORY FLOW RATE, in liters/second, versus lung inflation, in liters or percentage of lung capacity, during a FORCED VITAL CAPACITY determination. Common abbreviation is MEFV. Maximal Expiratory Flow Volume Curves
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D005260 Female Females
D005540 Forced Expiratory Flow Rates The rate of airflow measured during a FORCED VITAL CAPACITY determination. Expiratory Forced Flow Rates,Flow Rates, Expiratory Forced,Flow Rates, Forced Expiratory
D005826 Genetics, Medical A subdiscipline of human genetics which entails the reliable prediction of certain human disorders as a function of the lineage and/or genetic makeup of an individual or of any two parents or potential parents. Medical Genetics
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S F Man, and N Zamel
July 1974, Journal of applied physiology,
S F Man, and N Zamel
March 1979, Journal of applied physiology: respiratory, environmental and exercise physiology,
S F Man, and N Zamel
July 1971, Journal of applied physiology,
S F Man, and N Zamel
May 1975, Journal of applied physiology,
S F Man, and N Zamel
May 1975, Journal of applied physiology,
S F Man, and N Zamel
May 1975, Journal of applied physiology,
S F Man, and N Zamel
September 1975, Pflugers Archiv : European journal of physiology,
S F Man, and N Zamel
January 1977, Bulletin europeen de physiopathologie respiratoire,
S F Man, and N Zamel
January 1983, Bulletin europeen de physiopathologie respiratoire,
S F Man, and N Zamel
January 1971, Bulletin de physio-pathologie respiratoire,
Copied contents to your clipboard!