Functional studies on the interaction between human replication protein A and Xeroderma pigmentosum group A complementing protein (XPA). 1999

B E Lee, and J W Sung, and D K Kim, and J R Lee, and N D Kim, and S W Kang, and D K Kim
Department of Chemistry, Inje University, Kimhae, Korea.

The human replication protein A (RPA; also known as human single-stranded DNA binding protein, HSSB) is a multisubunit complex (70, 34 and 11 kDa subunits) involved in the three processes of DNA metabolism; replication, repair, recombination. We found that both 34 and 70 kDa subunits (p34 and p70, respectively), of RPA interacts with the Xeroderma pigmentosum group A complementing protein (XPA), a protein that specifically recognizes UV-damaged DNA. Our mutational analysis indicated that no particular domains of RPA p70 were essential for its interaction with XPA. We also examined the effect of this XPA-RPA interaction on in vitro simian virus 40 (SV40) DNA replication catalyzed by the crude extract and monopolymerase system. XPA inhibited SV40 DNA replication in vitro through its interaction with RPA. Taken together, these results suggest that there is a role for RPA in the regulation of DNA metabolism through its ability to modulate the interactions of proteins involved in the processes of DNA metabolism.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell

Related Publications

B E Lee, and J W Sung, and D K Kim, and J R Lee, and N D Kim, and S W Kang, and D K Kim
April 1996, Acta paediatrica (Oslo, Norway : 1992),
B E Lee, and J W Sung, and D K Kim, and J R Lee, and N D Kim, and S W Kang, and D K Kim
September 1995, The Journal of biological chemistry,
B E Lee, and J W Sung, and D K Kim, and J R Lee, and N D Kim, and S W Kang, and D K Kim
October 2017, Journal of medicinal chemistry,
B E Lee, and J W Sung, and D K Kim, and J R Lee, and N D Kim, and S W Kang, and D K Kim
November 1993, Biochemistry,
B E Lee, and J W Sung, and D K Kim, and J R Lee, and N D Kim, and S W Kang, and D K Kim
July 1990, Somatic cell and molecular genetics,
B E Lee, and J W Sung, and D K Kim, and J R Lee, and N D Kim, and S W Kang, and D K Kim
August 1996, Genomics,
B E Lee, and J W Sung, and D K Kim, and J R Lee, and N D Kim, and S W Kang, and D K Kim
October 1991, The Journal of biological chemistry,
B E Lee, and J W Sung, and D K Kim, and J R Lee, and N D Kim, and S W Kang, and D K Kim
August 2005, The Journal of investigative dermatology,
B E Lee, and J W Sung, and D K Kim, and J R Lee, and N D Kim, and S W Kang, and D K Kim
February 2011, The Journal of biological chemistry,
B E Lee, and J W Sung, and D K Kim, and J R Lee, and N D Kim, and S W Kang, and D K Kim
October 1998, Nucleic acids research,
Copied contents to your clipboard!