What guides early embryonic blood vessel formation? 1999

B M Weinstein
Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.

Survival of vertebrate embryos depends on their ability to assemble a correctly patterned, integrated network of blood vessels to supply oxygen and nutrients to developing tissues. The arrangement of larger caliber intraembryonic vessels, specification of arterial-venous identity, and proper placement of major branch points and arterial-venous connections are all precisely determined. A number of recent studies in both mammalian and nonmammalian vertebrate species, reviewed here, have now begun to reveal the major role played by genetically predetermined extrinsic cues in guiding the formation of early embryonic blood vessels and determining the global pattern of the vasculature.

UI MeSH Term Description Entries
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D001808 Blood Vessels Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins). Blood Vessel,Vessel, Blood,Vessels, Blood
D004707 Endoderm The inner of the three germ layers of an embryo. Definitive Endoderm,Definitive Endoderms,Endoderm, Definitive,Endoderms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D001158 Arteries The vessels carrying blood away from the heart. Artery
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
D015027 Zebrafish An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. Zebrafish is a model organism for drug assay and cancer research. Brachydanio rerio,Danio rerio,B. rerio,D. rerio,Zebra Fish,Zebra Fishes,Zebra danio,Zebrafishes,D. rerios,Fishes, Zebra,Zebra danios,danio, Zebra
D016228 Endothelial Growth Factors These growth factors are soluble mitogens secreted by a variety of organs. The factors are a mixture of two single chain polypeptides which have affinity to heparin. Their molecular weight are organ and species dependent. They have mitogenic and chemotactic effects and can stimulate endothelial cells to grow and synthesize DNA. The factors are related to both the basic and acidic FIBROBLAST GROWTH FACTORS but have different amino acid sequences. Endothelial Cell-Derived Growth Factors,alpha-Endothelial Growth Factor,beta-Endothelial Growth Factor,ECDGF,Endo-GF,Endothelial Growth Factor,Endothelial Growth Factor Polypeptides,Endothelial Cell Derived Growth Factors,Growth Factor, Endothelial,Growth Factor, alpha-Endothelial,Growth Factor, beta-Endothelial,Growth Factors, Endothelial,alpha Endothelial Growth Factor,beta Endothelial Growth Factor

Related Publications

B M Weinstein
January 2015, PloS one,
B M Weinstein
August 2003, Trends in cardiovascular medicine,
B M Weinstein
January 2020, Biochemical and biophysical research communications,
B M Weinstein
December 2003, The Journal of reproduction and development,
B M Weinstein
January 2004, Current topics in developmental biology,
B M Weinstein
December 2011, Seminars in cell & developmental biology,
B M Weinstein
March 2015, Cold Spring Harbor perspectives in biology,
Copied contents to your clipboard!