Evidence of neuronal degeneration in C57B1/6 mice infected with the LP-BM5 leukemia retrovirus mixture. 1998

Y Kustova, and M G Espey, and E G Sung, and D Morse, and Y Sei, and A S Basile
Laboratory of Bio-Organic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892-0008, USA.

Mice infected with LP-BM5 develop a severe immunodeficiency accompanied by learning and memory deficits, gliosis, and neurotransmitter abnormalities. The neurochemical alterations are consistent with elevated excitotoxin levels, suggesting that infected mice may incur neuronal damage. Although the number of neocortical neurons was unchanged in mice 12 wk after LP-BM5 infection, the expression of cytoskeletal proteins declined, particularly in the frontal and parietal cortex as indicated by MAP2, NF-200, and synaptophysin immunoreactivity. In contrast, the number of striatal neurons decreased 19%. The remaining neurons were smaller, with fewer synaptic boutons, and showed decreased synaptophysin and NF-200, immunoreactivity. Immunoblots of cortex and striatum confirmed decreases in MAP2, NF-200 and synaptophysin expression. Finally, although NCAM expression decreased in the striatum, it increased in the cortex. These results indicate that LP-BM5-infected mice sustain significant neuronal damage, which may contribute to their behavioral deficits. Moreover, the increase in cortical NCAM expression suggests active synaptic remodeling to compensate for the persistent excitotoxic environment in these mice, whereas striatal neurons degenerate. These concurrent degenerative and compensatory processes may also occur in the brains of patients with AIDS dementia complex (ADC), who suffer extensive degeneration of the basal ganglia and cerebral cortex.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D009052 Leukemia Virus, Murine Species of GAMMARETROVIRUS, containing many well-defined strains, producing leukemia in mice. Disease is commonly induced by injecting filtrates of propagable tumors into newborn mice. Graffi Virus,Graffi's Chloroleukemic Strain,Leukemia Viruses, Murine,Mouse Leukemia Viruses,Murine Leukemia Virus,Murine Leukemia Viruses,Graffi Chloroleukemic Strain,Graffis Chloroleukemic Strain,Leukemia Viruses, Mouse
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression

Related Publications

Y Kustova, and M G Espey, and E G Sung, and D Morse, and Y Sei, and A S Basile
February 1999, European journal of pharmacology,
Y Kustova, and M G Espey, and E G Sung, and D Morse, and Y Sei, and A S Basile
January 2011, Bioscience, biotechnology, and biochemistry,
Y Kustova, and M G Espey, and E G Sung, and D Morse, and Y Sei, and A S Basile
January 1995, International immunology,
Y Kustova, and M G Espey, and E G Sung, and D Morse, and Y Sei, and A S Basile
July 2007, Neuroscience letters,
Y Kustova, and M G Espey, and E G Sung, and D Morse, and Y Sei, and A S Basile
February 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Y Kustova, and M G Espey, and E G Sung, and D Morse, and Y Sei, and A S Basile
February 1987, Journal of virology,
Y Kustova, and M G Espey, and E G Sung, and D Morse, and Y Sei, and A S Basile
September 1996, Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration,
Y Kustova, and M G Espey, and E G Sung, and D Morse, and Y Sei, and A S Basile
December 1996, Brain research,
Y Kustova, and M G Espey, and E G Sung, and D Morse, and Y Sei, and A S Basile
July 1992, Alcohol and alcoholism (Oxford, Oxfordshire),
Copied contents to your clipboard!