Lithium administration affects gene expression of thyroid hormone receptors in rat brain. 1999

C G Hahn, and A C Pawlyk, and P C Whybrow, and L Gyulai, and S M Tejani-Butt
Department of Psychiatry, University of Pennsylvania, Philadelphia 19104, USA.

Even though lithium has received wide attention in the treatment of manic depressive illness, the mechanisms underlying its mood stabilizing effects are not understood. Lithium is known to interact with the thyroid axis and causes hypothyroidism in a subgroup of patients, which compromises its mood stabilizing effects. Since lithium was recently reported to alter thyroid hormone metabolism in the rat brain, the present study investigated whether these effects were mediated through regulation of thyroid hormone receptor (THR) gene expression. Adult male euthyroid rats were either given a diet containing 0.25% lithium or one without lithium for 14 days. Rats were sacrificed in the evening and RNA was isolated from different brain regions to quantitate the isoform specific mRNAs of THRs. Following 14 days of lithium treatment, THR alpha1 mRNA levels were increased in the cortex and decreased in hypothalamus; THR alpha2 mRNA levels were increased in the cortex and THR beta mRNA levels were decreased in the hypothalamus. No significant difference in the expression of these THR isoforms was observed in the hippocampus or cerebellum. Thus, chronic lithium treatment appeared to regulate THR gene expression in a subtype and region specific manner in the rat brain. It remains to be determined whether the observed effects of lithium on THR gene expression are related to its therapeutic efficacy in the treatment of bipolar disorder.

UI MeSH Term Description Entries
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D008297 Male Males
D011988 Receptors, Thyroid Hormone Specific high affinity binding proteins for THYROID HORMONES in target cells. They are usually found in the nucleus and regulate DNA transcription. These receptors are activated by hormones that leads to transcription, cell differentiation, and growth suppression. Thyroid hormone receptors are encoded by two genes (GENES, ERBA): erbA-alpha and erbA-beta for alpha and beta thyroid hormone receptors, respectively. Diiodotyrosine Receptors,Receptors, Diiodotyrosine,Receptors, Thyroxine,Receptors, Triiodothyronine,T3 Receptors,T4 Receptors,Thyroid Hormone Receptors,Thyroxine Receptors,Triiodothyronine Receptors,DIT Receptors,Diiodotyrosine Receptor,MIT Receptors,Monoiodotyrosine Receptors,Receptors, DIT,Receptors, MIT,Receptors, Monoiodotyrosine,Receptors, T3,Receptors, T4,T3 Receptor,T4 Receptor,Thyroid Hormone Receptor,Thyroxine Receptor
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

C G Hahn, and A C Pawlyk, and P C Whybrow, and L Gyulai, and S M Tejani-Butt
March 1993, Biochemical and biophysical research communications,
C G Hahn, and A C Pawlyk, and P C Whybrow, and L Gyulai, and S M Tejani-Butt
February 2003, Developmental biology,
C G Hahn, and A C Pawlyk, and P C Whybrow, and L Gyulai, and S M Tejani-Butt
August 1999, Neuroreport,
C G Hahn, and A C Pawlyk, and P C Whybrow, and L Gyulai, and S M Tejani-Butt
March 2000, Biology of reproduction,
C G Hahn, and A C Pawlyk, and P C Whybrow, and L Gyulai, and S M Tejani-Butt
January 1997, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
C G Hahn, and A C Pawlyk, and P C Whybrow, and L Gyulai, and S M Tejani-Butt
January 1992, The Journal of biological chemistry,
C G Hahn, and A C Pawlyk, and P C Whybrow, and L Gyulai, and S M Tejani-Butt
January 1992, Acta medica Austriaca,
C G Hahn, and A C Pawlyk, and P C Whybrow, and L Gyulai, and S M Tejani-Butt
May 2003, Journal of endocrinological investigation,
C G Hahn, and A C Pawlyk, and P C Whybrow, and L Gyulai, and S M Tejani-Butt
July 2005, Neuroscience research,
C G Hahn, and A C Pawlyk, and P C Whybrow, and L Gyulai, and S M Tejani-Butt
August 1994, Endocrinology,
Copied contents to your clipboard!