Cytoplasmic inheritance in mammalian tissue culture cells. 1976

D C Wallace, and Y Pollack, and C L Bunn, and J M Eisenstadt

A series of intraspecific, interspecific and interorder somatic cell cybrids and hybrids have been prepared by fusions in which one of the parents contained the cytoplasmically inherited marker for chloramphenicol (CAP) resistance. A clear relationship has been established between the expression of the CAP-resistant (CAP-R) determinants in the fusion products and the genetic homology of the parents. With increased genetic divergence, the acceptability of the CAP-R mitochondria decreased. Intraspecific cybrids and hybrids of the same strain were stable for the CAP-R marker, while those between strains were stable only in CAP. Intergeneric mouse-hamster cybrids occurred at a high frequency but were unstable in CAP, while CAP suppressed hybrid formation 100-fold. Interorder cybrids (CAP-R human X CAP-S mouse) occurred either at a moderate frequency and were stable at a low frequency and were unstable in CAP. Interorder hybrids could only be formed by challenging HAT-selected hybrids with CAP or by direct selection in ouabain and CAP. Reciprocal interorder crosses between CAP-R mouse and CAP-S human cells were unsuccessful. Interspecific cybrids contain only the chromosomes of the CAP-S parent. Interspecific hybrids selected directly in CAP segregated the chromosomes of the CAP-S parent, while hybrids selected in HAT and then CAP segregated those of the CAP-R parent. The mitochondrial DNA(mtDNA) of all mouse-human cybrids and most HAT and then CAP-selected hybrids contain only the mtDNA of the CAP-S mouse parent. However, preliminary evidence suggests that one of these hybrids contains both mouse and human mtDNA sequences.

UI MeSH Term Description Entries
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D005111 Extrachromosomal Inheritance Vertical transmission of hereditary characters by DNA from cytoplasmic organelles such as MITOCHONDRIA; CHLOROPLASTS; and PLASTIDS, or from PLASMIDS or viral episomal DNA. Cytoplasmic Inheritance,Extranuclear Inheritance,Inheritance, Cytoplasmic,Inheritance, Extrachromosomal,Inheritance, Extranuclear
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006822 Hybrid Cells Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION. Somatic Cell Hybrids,Cell Hybrid, Somatic,Cell Hybrids, Somatic,Cell, Hybrid,Cells, Hybrid,Hybrid Cell,Hybrid, Somatic Cell,Hybrids, Somatic Cell,Somatic Cell Hybrid

Related Publications

D C Wallace, and Y Pollack, and C L Bunn, and J M Eisenstadt
May 1974, Proceedings of the National Academy of Sciences of the United States of America,
D C Wallace, and Y Pollack, and C L Bunn, and J M Eisenstadt
November 1958, Nutrition reviews,
D C Wallace, and Y Pollack, and C L Bunn, and J M Eisenstadt
May 2002, Current protocols in molecular biology,
D C Wallace, and Y Pollack, and C L Bunn, and J M Eisenstadt
September 1955, Science (New York, N.Y.),
D C Wallace, and Y Pollack, and C L Bunn, and J M Eisenstadt
October 1971, The Japanese journal of experimental medicine,
D C Wallace, and Y Pollack, and C L Bunn, and J M Eisenstadt
May 1956, Nutrition reviews,
D C Wallace, and Y Pollack, and C L Bunn, and J M Eisenstadt
April 1959, The Journal of biological chemistry,
D C Wallace, and Y Pollack, and C L Bunn, and J M Eisenstadt
January 1966, Cold Spring Harbor symposia on quantitative biology,
D C Wallace, and Y Pollack, and C L Bunn, and J M Eisenstadt
October 1975, The Journal of cell biology,
D C Wallace, and Y Pollack, and C L Bunn, and J M Eisenstadt
May 1971, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!