Rescue effects of IPE transplants in RCS rats: short-term results. 1999

U Schraermeyer, and N Kociok, and K Heimann
Department of Vitreoretinal Surgery, University of Cologne, Germany.

OBJECTIVE The aim of this study was to investigate the possible rescue effect of subretinal iris pigment epithelial (IPE) cell transplantation in Royal College of Surgeons (RCS) rats by light and electron microscopic histology. METHODS IPE cells were harvested from 20- to 26-day-old Long-Evans rats and were directly trans planted transsclerally into the subretinal space of 32 16- to 20-day-old RCS rats using a 32-gauge Hamilton syringe. Specimens of transplanted eyes were embedded for electron microscopy after 8 weeks. Specimens from the iris and retinal pigment epithelium (RPE) of Long-Evans rats and RPE from RCS rats without surgical treatment were also embedded. Sham surgery was also performed in 8 eyes. RESULTS The IPE cells transplanted into the subretinal space were localized between host RPE and retina, had round cell shapes without polar organization, and contained phagosomes resulting from rod outer segment (ROS) uptake. The underlying host RPE cells were heavily pigmented. RPE cells from RCS rats revealed fragmentation of endoplasmic reticulum, which distinguishes them ultrastructurally from pigment epithelial cells of Long-Evans rats. Ultrastructural alterations were observed in the cytoplasm of transplanted cells. Melanin granules in the IPE cells were found in large vacuoles, which also contained phagosomes originating from ROS uptake. In 13 eyes, 1 to 4 rows and 5 to 8 rows of saved photoreceptors were detected facing transplanted IPE cells in 6 (46%) and 4 (31%) eyes, respectively, 2 months after surgery. However, in 10 (53%) and 7 (37%) of 19 eyes, 1 to 4 rows and 5 to 8 rows, respectively, were also found at sites without IPE cells in the plane of section. ROS directed toward transplanted IPE cells were seen in one case, but these rods were shortened and disorganized. At most sites between transplanted cells and inner segments of photoreceptors, outer segments and cellular debris were absent. In eyes without transplanted cells no photoreceptor cells were alive at the age of 2 months. After sham surgery 6 (75%) eyes had 1 to 4 rows and 2 (25%) 5 to 8 rows of photoreceptors. CONCLUSIONS Transplanted IPE cells can take up and degrade ROS in vivo in RCS rats. Uptake of ROS alters the morphology of pigment granules in transplanted IPE cells. Pigmentation is an uncertain marker for identifying transplanted pigment cells. IPE transplants are not as good as RPE transplants in rescuing photoreceptors. However, there is a significant difference between transplanted eyes and nontreated eyes. The rescue effect of IPE cells was not significantly different from that of sham surgery.

UI MeSH Term Description Entries
D007498 Iris The most anterior portion of the uveal layer, separating the anterior chamber from the posterior. It consists of two layers - the stroma and the pigmented epithelium. Color of the iris depends on the amount of melanin in the stroma on reflection from the pigmented epithelium.
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D010857 Pigment Epithelium of Eye The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye. Eye Pigment Epithelium
D011922 Rats, Mutant Strains Rats bearing mutant genes which are phenotypically expressed in the animals. Mutant Strains Rat,Mutant Strains Rats,Rat, Mutant Strains,Strains Rat, Mutant,Strains Rats, Mutant
D012162 Retinal Degeneration A retrogressive pathological change in the retina, focal or generalized, caused by genetic defects, inflammation, trauma, vascular disease, or aging. Degeneration affecting predominantly the macula lutea of the retina is MACULAR DEGENERATION. (Newell, Ophthalmology: Principles and Concepts, 7th ed, p304) Degeneration, Retinal,Degenerations, Retinal,Retinal Degenerations
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft

Related Publications

U Schraermeyer, and N Kociok, and K Heimann
January 1990, Progress in brain research,
U Schraermeyer, and N Kociok, and K Heimann
October 1991, Current eye research,
U Schraermeyer, and N Kociok, and K Heimann
June 1991, Experimental eye research,
U Schraermeyer, and N Kociok, and K Heimann
March 2009, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
U Schraermeyer, and N Kociok, and K Heimann
October 1993, Investigative ophthalmology & visual science,
U Schraermeyer, and N Kociok, and K Heimann
October 2021, Cells,
U Schraermeyer, and N Kociok, and K Heimann
January 1976, Verhandlungen der Anatomischen Gesellschaft,
U Schraermeyer, and N Kociok, and K Heimann
October 1996, Current eye research,
U Schraermeyer, and N Kociok, and K Heimann
January 2006, Cloning and stem cells,
Copied contents to your clipboard!