Effects of pressure on the kinetics of capture by yeast alcohol dehydrogenase. 1999

Y K Cho, and D B Northrop
Department of Biochemistry, Changwon National University, Changwon City, Kyungnam, South Korea.

High pressure causes biphasic effects on the oxidation of benzyl alcohol by yeast alcohol dehydrogenase as expressed in the kinetic parameter V/K which measures substrate capture. Moderate pressure increases the rate of capture of benzyl alcohol by activating the hydride transfer step. This means that the transition state for hydride transfer has a smaller volume than the free alcohol plus the capturing form of enzyme, with a DeltaV of -39 +/- 1 mL/mol, a value that is relatively large. This is the first physical property of an enzymatic transition state thus characterized, and it offers new possibilities for structure-activity analyses. Pressures of >1.5 kbar decrease the rate of capture of benzyl alcohol by favoring a conformation of the enzyme which binds nicotinamide adenine dinucleotide (NAD+) less tightly. This means that the ground state for tight binding, E-NAD+, has a larger volume than the collision complex, E-NAD+, with a DeltaV of 73 +/- 2 mL/mol. The equilibrium constant of the conformational change Keq is 75 +/- 13 at 1 atm. The effects of pressure on the capture of NAD+ have no activation phase because the conformational change is now being expressed kinetically instead of thermodynamically, together with but in opposition to hydride transfer, causing the effects to cancel. For yeast alcohol dehydrogenase, this conformational change had not been detected previously, but similar conformational changes have been found by spectroscopic means in other dehydrogenases, and some of them are also sensitive to pressure. The opposite signs for the volume change of tighter binding and hydride transfer run contrary to Pauling's hypothesis that substrates are bound more tightly in the transition state than in the Michaelian reactant state.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D006874 Hydrostatic Pressure The pressure due to the weight of fluid. Hydrostatic Pressures,Pressure, Hydrostatic,Pressures, Hydrostatic
D000426 Alcohol Dehydrogenase A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen. Alcohol Dehydrogenase (NAD+),Alcohol Dehydrogenase I,Alcohol Dehydrogenase II,Alcohol-NAD+ Oxidoreductase,Yeast Alcohol Dehydrogenase,Alcohol Dehydrogenase, Yeast,Alcohol NAD+ Oxidoreductase,Dehydrogenase, Alcohol,Dehydrogenase, Yeast Alcohol,Oxidoreductase, Alcohol-NAD+
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Y K Cho, and D B Northrop
August 2005, Protein and peptide letters,
Y K Cho, and D B Northrop
January 2005, Archives of biochemistry and biophysics,
Y K Cho, and D B Northrop
January 1990, Acta biochimica et biophysica Hungarica,
Y K Cho, and D B Northrop
July 2005, Protein and peptide letters,
Y K Cho, and D B Northrop
July 2021, Biochemistry and biophysics reports,
Y K Cho, and D B Northrop
February 1960, The Journal of biological chemistry,
Y K Cho, and D B Northrop
January 1991, Advances in experimental medicine and biology,
Y K Cho, and D B Northrop
July 1997, International journal of biological macromolecules,
Y K Cho, and D B Northrop
August 1980, Biochimica et biophysica acta,
Copied contents to your clipboard!