Expression of neurotrophins in hippocampal interneurons immunoreactive for the neuropeptides somatostatin, neuropeptide-Y, vasoactive intestinal polypeptide and cholecystokinin. 1999

M Pascual, and L Acsády, and N Rocamora, and T F Freund, and E Soriano
Department of Animal and Plant Cell Biology, Faculty of Biology, University of Barcelona, Spain.

Using a double detection method, which combines in situ hybridization for the detection of neurotrophin messenger RNA with immunocytochemistry against the neuropeptides somatostatin, neuropeptide Y, vasoactive intestinal polypeptide and cholecystokinin, we have analysed the expression of the neurotrophins, nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3, in distinct populations of neuropeptide-immunoreactive hippocampal interneurons. Nerve growth factor messenger RNA expression was found in subsets of the four subpopulations of neuropeptide-immunoreactive interneurons. The highest degree of co-localization was observed in the neuropeptide-Y-positive cells (up to 70%) and in somatostatin-immunoreactive cells (48%). Only small subsets of cholecystokinin- and vasoactive intestinal polypeptide-positive neurons (21% and 10%, respectively) displayed nerve growth factor hybridization signals. In contrast, expression of neurotrophin-3 messenger RNA was exclusively observed in 26% of neuropeptide-Y-immunoreactive cells. Brain-derived neurotrophic factor hybridization signals were never detected in the neuropeptide-positive hippocampal interneurons. Morphological analysis of neuropeptide-immunoreactive interneurons that express or lack nerve growth factor messenger RNA revealed that most perisomatic inhibitory neurons, such as large vasoactive intestinal polypeptide/ cholecystokinin-immunoreactive cells, showed positive nerve growth factor hybridization signals. In addition, some somatostatin/neuropeptide-Y-immunoreactive interneurons, which are responsible for dendritic inhibition of principal hippocampal neurons, expressed nerve growth factor messenger RNA. In contrast, interneurons specialized to innervate other GABAergic cells, such as small vasoactive intestinal polypeptide-positive cells, lacked nerve growth factor expression. All these data indicate that expression of neurotrophins is differentially regulated in functionally distinct classes of hippocampal interneurons immunoreactive for neuropeptides. We also analysed whether neuropeptide-immunoreactive interneurons expressing neurotrophins were targets of the GABAergic septohippocampal pathway. We used a triple detection method, combining anterograde tracing of this connection, with in situ hybridization for the detection of neurotrophin mRNA, and immunocytochemistry against neuropeptides. Our data showed that the four populations of hippocampal interneurons studied (somatostatin, neuropeptide-Y, vasoactive intestinal polypeptide and cholescystokinin) received GABAergic afferents from the septum. However, no preference for neuropeptide-immunoreactive cells expressing neurotrophins was observed, compared to neuropeptide-positive neurons lacking neurotrophin expression.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D002766 Cholecystokinin A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety. Pancreozymin,CCK-33,Cholecystokinin 33,Uropancreozymin
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

M Pascual, and L Acsády, and N Rocamora, and T F Freund, and E Soriano
December 1988, Journal of the autonomic nervous system,
M Pascual, and L Acsády, and N Rocamora, and T F Freund, and E Soriano
October 1994, Neuroscience,
M Pascual, and L Acsády, and N Rocamora, and T F Freund, and E Soriano
January 1990, Peptides,
M Pascual, and L Acsády, and N Rocamora, and T F Freund, and E Soriano
July 1997, Experimental brain research,
M Pascual, and L Acsády, and N Rocamora, and T F Freund, and E Soriano
February 1994, Cell and tissue research,
M Pascual, and L Acsády, and N Rocamora, and T F Freund, and E Soriano
August 2018, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Pascual, and L Acsády, and N Rocamora, and T F Freund, and E Soriano
January 1995, Neuroscience and biobehavioral reviews,
M Pascual, and L Acsády, and N Rocamora, and T F Freund, and E Soriano
January 1985, International review of neurobiology,
M Pascual, and L Acsády, and N Rocamora, and T F Freund, and E Soriano
January 1990, Progress in neuro-psychopharmacology & biological psychiatry,
Copied contents to your clipboard!