The entorhino-septo-supramammillary nucleus connection in the rat: morphological basis of a feedback mechanism regulating hippocampal theta rhythm. 1999

C Leranth, and D Carpi, and G Buzsaki, and J Kiss
Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06520-8063, USA.

Recent electrophysiological observations suggest that, in addition to the medial septal area pacemaker system, several alternative or additional mechanisms are involved in the generation/regulation of hippocampal theta activity. Discharging neurons phase-locked to hippocampal theta waves have been observed in the dorsal raphe, nucleus reticularis pontis oralis and especially in the supramammillary region of rats. Since these areas are reciprocally interconnected with the hippocampal formation, including the entorhinal cortex, it would aid our understanding of limbic function to elucidate the location and neurochemical content of the entorhino-septal and septo-supramammillary projection neurons, as well as that of their postsynaptic targets. Light and electron microscopic immunostaining for calretinin, in combination with antero- and retrograde tracer techniques, postembedding immunostaining for GABA and the transmitter specific [3H]D-aspartate retrograde radiolabeling, as well as a co-localization experiment for calretinin and glutamate decarboxylase in rat supramammillary and septal neurons, demonstrated that: (i) a large population of entorhinal cells that forms asymmetric synaptic contacts on calretinin-containing neurons located at the border between the medial and lateral septal areas contains calretinin and are aspartate/glutamatergic; (ii) the overwhelming majority of calretinin-immunoreactive cells located at the border between the lateral and medial septal area are GABAergic; (iii) these neurons can be retrogradely labeled from the supramammillary area; (iv) anterogradely labeled axons originating in the border between the medial and lateral septum are GABAergic and (v) terminate on supramammillary area non-GABAergic, calretinin-containing neurons, which are known to project to the septal complex and hippocampus. These observations indicate that a large population of cells participating in the hippocampal feedback regulation of theta regulation/generation contain the same calcium-binding protein. Furthermore, entorhinal excitatory transmitter-containing neurons can depress the activity of supramammillary theta generating/regulating cells via septal inhibitory neurons.

UI MeSH Term Description Entries
D008297 Male Males
D008326 Mammillary Bodies A pair of nuclei and associated GRAY MATTER in the interpeduncular space rostral to the posterior perforated substance in the POSTERIOR HYPOTHALAMUS. Mamillary Bodies,Bodies, Mamillary,Bodies, Mammillary,Body, Mamillary,Body, Mammillary,Mamillary Body,Mammillary Body
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005260 Female Females
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

C Leranth, and D Carpi, and G Buzsaki, and J Kiss
July 1995, Neuroscience,
C Leranth, and D Carpi, and G Buzsaki, and J Kiss
September 1979, Experimental brain research,
C Leranth, and D Carpi, and G Buzsaki, and J Kiss
October 1982, Electroencephalography and clinical neurophysiology,
C Leranth, and D Carpi, and G Buzsaki, and J Kiss
November 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C Leranth, and D Carpi, and G Buzsaki, and J Kiss
January 1967, Helvetica physiologica et pharmacologica acta,
C Leranth, and D Carpi, and G Buzsaki, and J Kiss
August 1997, Brain research,
C Leranth, and D Carpi, and G Buzsaki, and J Kiss
November 1978, The Journal of physiology,
C Leranth, and D Carpi, and G Buzsaki, and J Kiss
October 2011, Hippocampus,
C Leranth, and D Carpi, and G Buzsaki, and J Kiss
May 2006, The European journal of neuroscience,
Copied contents to your clipboard!