Calnexin interaction with N-glycosylation mutants of a polytopic membrane glycoprotein, the human erythrocyte anion exchanger 1 (band 3). 1999

M Popov, and R A Reithmeier
Medical Research Council Group in Membrane Biology, Departments of Medicine and Biochemistry, University of Toronto, Ontario M5S 1A8, Canada.

The interaction of the endoplasmic reticulum chaperone calnexin with N-glycosylation mutants of a polytopic membrane glycoprotein, the human erythrocyte anion exchanger (AE1), was characterized by cell-free translation and in transfected HEK293 cells, followed by co-immunoprecipitation using anti-calnexin antibody. AE1 contains 12-14 transmembrane segments and has a single site of N-glycosylation at Asn-642 in the fourth extracytosolic loop. This site was mutated (N642D) to create a nonglycosylated protein. Calnexin showed a preferential interaction with N-glycosylated AE1 relative to nonglycosylated AE1 both in vitro and in vivo. This interaction could be blocked by inhibition of glucosidases I and II with castanospermine. Calnexin had access to novel N-glycosylated sites created in other extracytosolic loops in AE1 by site-directed or insertional mutagenesis. The interaction with AE1 was enhanced when multiple sites were introduced into the same loop or into two different loops. An association of calnexin with truncated versions of N-glycosylated AE1 was detected after release of the nascent chains from ribosomes with puromycin. The results show that the interaction of calnexin with the polytopic membrane glycoprotein AE1 was dependent on the presence but not the location of the oligosaccharide. Furthermore, calnexin was associated with AE1 after release of AE1 from the translocation machinery.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001457 Anion Exchange Protein 1, Erythrocyte A major integral transmembrane protein of the ERYTHROCYTE MEMBRANE. It is the anion exchanger responsible for electroneutral transporting in CHLORIDE IONS in exchange of BICARBONATE IONS allowing CO2 uptake and transport from tissues to lungs by the red blood cells. Genetic mutations that result in a loss of the protein function have been associated with type 4 HEREDITARY SPHEROCYTOSIS. Anion Transport Protein, Erythrocyte,Band 3 Protein,Erythrocyte Anion Transport Protein,Erythrocyte Membrane Band 3 Protein,AE1 Anion Exchanger,AE1 Chloride-Bicarbonate Exchanger,AE1 Cl- HCO3- Exchanger,AE1 Gene Product,Anion Exchanger 1,Antigens, CD233,Band 3 Anion Transport Protein,Band III Protein,CD233 Antigen,CD233 Antigens,Capnophorin,EPB3 Protein,Erythrocyte Anion Exchanger,Erythrocyte Membrane Anion Transport Protein,Erythrocyte Membrane Protein Band 3, Diego Blood Group,Protein Band 3,SLC4A1 Protein,Solute Carrier Family 4 Member 1,Solute Carrier Family 4, Anion Exchanger, Member 1,AE1 Chloride Bicarbonate Exchanger,AE1 Cl HCO3 Exchanger,Anion Exchanger, Erythrocyte,Antigen, CD233,Chloride-Bicarbonate Exchanger, AE1,Exchanger 1, Anion,Protein, EPB3
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

M Popov, and R A Reithmeier
May 1994, Biochimica et biophysica acta,
M Popov, and R A Reithmeier
February 1986, Biochemistry,
M Popov, and R A Reithmeier
November 2015, Science (New York, N.Y.),
M Popov, and R A Reithmeier
February 1993, Biochemistry,
M Popov, and R A Reithmeier
June 1997, Biochimica et biophysica acta,
M Popov, and R A Reithmeier
March 1987, The Journal of biological chemistry,
M Popov, and R A Reithmeier
September 1996, The Biochemical journal,
Copied contents to your clipboard!