Millisecond analyses of Ca2+ initiation sites evoked by muscarinic receptor stimulation in exocrine acinar cells. 1999

H Takemura, and S Yamashina, and A Segawa
Department of Pharmacology, Sapporo Medical University, South 1, West 17, Sapporo, 060-8556, USA. takemura@saped.ac.jp

High speed laser confocal microscopy (8 ms/image) was applied to the dissociated parotid acini as a model to study Ca2+ signaling mechanisms in non-excitable exocrine secretory cells. Immunofluorescence microscopy showed the localization of IP3 receptor type 2 along the apical membrane region. Muscarinic stimulation with carbachol evoked a rise in [Ca2+]i that was initiated from apical region and propagated into basal region as Ca2+ waves. This was most clearly observed when extracellular Ca2+ was omitted. Carbachol also triggered the abrupt increase of [Ca2+]i simultaneously at both basal and apical regions in many acini. Within an acinus, each cell responded synchronously. The present results suggest that one Ca2+ initiation site in the rat parotid acinar cell is apical region, corresponding to the localization of IP3 receptors. Another Ca2+ initiation site is basal region, which seems to be related to Ca2+ entry from extracellular medium and/or Ca2+ release from basally located organelles such as nuclei and endoplasmic reticulum.

UI MeSH Term Description Entries
D008297 Male Males
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D010306 Parotid Gland The largest of the three pairs of SALIVARY GLANDS. They lie on the sides of the FACE immediately below and in front of the EAR. Gland, Parotid,Glands, Parotid,Parotid Glands
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000442 Octanols Isomeric forms and derivatives of octanol (C8H17OH). Alcohols, Octyl,Heptylcarbinols,Hydroxyoctanes,Octylic Alcohols,Alcohols, Octylic,Octyl Alcohols
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015544 Inositol 1,4,5-Trisphosphate Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin. 1,4,5-InsP3,Inositol 1,4,5-Triphosphate,Myo-Inositol 1,4,5-Trisphosphate,1,4,5-IP3,Myoinositol 1,4,5-Triphosphate

Related Publications

H Takemura, and S Yamashina, and A Segawa
April 1985, The Journal of biological chemistry,
H Takemura, and S Yamashina, and A Segawa
December 2007, American journal of physiology. Gastrointestinal and liver physiology,
H Takemura, and S Yamashina, and A Segawa
January 2024, The Journal of physiology,
H Takemura, and S Yamashina, and A Segawa
January 2005, Cell calcium,
H Takemura, and S Yamashina, and A Segawa
March 1996, The Journal of biological chemistry,
H Takemura, and S Yamashina, and A Segawa
March 1994, The American journal of physiology,
Copied contents to your clipboard!