TrkB isoforms with distinct neurotrophin specificities are expressed in predominantly nonoverlapping populations of avian dorsal root ganglion neurons. 1999

K L Boeshore, and C N Luckey, and R E Zigmond, and T H Large
Department of Neurosciences and Visual Sciences Research Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4975, USA.

Alternative splicing of the avian trkB receptor generates an extracellular deletion (ED) isoform missing 11 amino acids from the neurotrophin-binding domain of the full-length (FL) receptor. When expressed in fibroblasts, the ED isoform exhibited restricted neurotrophin specificity compared with that of the FL receptor. Brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) activated the FL receptor, as determined by tyrosine phosphorylation. However, only BDNF was capable of significant activation of the ED isoform, although to a reduced level. Because positively charged residues in NT-3 are important for binding to trkB, two negatively charged aspartate residues within the 11 amino acid motif of FL trkB were mutated to examine the role of electrostatic interactions on ligand binding. As found for the ED isoform, the FL mutated receptor displayed a similar loss of NT-3- and NT-4-mediated activation, in addition to a diminished responsiveness to BDNF. Because of these profound effects on ligand specificity, reverse transcription-PCR was used to understand the expression of the FL and ED receptor isoforms at the level of single neurons. The predominant expression pattern of either FL or ED isoforms in single embryonic DRG neurons establishes the existence of two subpopulations exhibiting differential responsiveness to trkB ligands, indicating that regulated splicing of the extracellular domain of trkB may serve as a mechanism to restrict neuronal responsiveness to the neurotrophins.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

K L Boeshore, and C N Luckey, and R E Zigmond, and T H Large
September 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K L Boeshore, and C N Luckey, and R E Zigmond, and T H Large
January 1995, The Journal of comparative neurology,
K L Boeshore, and C N Luckey, and R E Zigmond, and T H Large
August 2007, The Journal of biological chemistry,
K L Boeshore, and C N Luckey, and R E Zigmond, and T H Large
March 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
K L Boeshore, and C N Luckey, and R E Zigmond, and T H Large
August 1996, Neuroscience,
K L Boeshore, and C N Luckey, and R E Zigmond, and T H Large
July 2008, Brain research,
K L Boeshore, and C N Luckey, and R E Zigmond, and T H Large
August 1996, Molecular biology of the cell,
K L Boeshore, and C N Luckey, and R E Zigmond, and T H Large
November 2007, BMC neuroscience,
K L Boeshore, and C N Luckey, and R E Zigmond, and T H Large
November 2009, American journal of physiology. Renal physiology,
K L Boeshore, and C N Luckey, and R E Zigmond, and T H Large
February 1997, Journal of neuroscience research,
Copied contents to your clipboard!