Changes in electrocortical power and coherence in response to the selective cholinergic immunotoxin 192 IgG-saporin. 1999

D P Holschneider, and J J Waite, and A F Leuchter, and N Y Walton, and O U Scremin
Department of Neurology, University of Southern California, School of Medicine, Los Angeles, USA. holschne@hsc.usc.edu

Changes in brain electrical activity in response to cholinergic agonists, antagonists, or excitotoxic lesions of the basal forebrain may not be reflective entirely of changes in cholinergic tone, in so far as these interventions also involve noncholinergic neurons. We examined electrocortical activity in rats following bilateral intracerebroventricular administration of 192 IgG-saporin (1.8 microg/ventricle), a selective cholinergic immunotoxin directed to the low-affinity nerve growth factor receptor p75. The immunotoxin resulted in extensive loss of choline acetyl transferase (ChAT) activity in neocortex (80%-84%) and hippocampus (93%), with relative sparing of entorhinal-piriform cortex (42%) and amygdala (28%). Electrocortical activity demonstrated modest increases in 1- to 4-Hz power, decreases in 20- to 44-Hz power, and decreases in 4- to 8-Hz intra- and interhemispheric coherence. Rhythmic slow activity (RSA) occurred robustly in toxin-treated animals during voluntary movement and in response to physostigmine, with no significant differences seen in power and peak frequency in comparison with controls. Physostigmine significantly increased intrahemispheric coherence in lesioned and intact animals, with minor increases seen in interhemispheric coherence. Our study suggests that: (1) electrocortical changes in response to selective cholinergic deafferentation are more modest than those previously reported following excitotoxic lesions; (2) changes in cholinergic tone affect primarily brain electrical transmission within, in contrast to between hemispheres; and (3) a substantial cholinergic reserve remains following administration of 192 IgG-saporin, despite dramatic losses of ChAT in cortex and hippocampus. Persistence of a cholinergically modulated RSA suggests that such activity may be mediated through cholinergic neurons which, because they lack the p75 receptor, remain unaffected by the immunotoxin.

UI MeSH Term Description Entries
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009699 N-Glycosyl Hydrolases A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars. Glycoside Hydrolases, Nitrogen-linked,Hydrolases, N-Glycosyl,Nucleosidase,Nucleosidases,Nucleoside Hydrolase,Nitrogen-linked Glycoside Hydrolases,Nucleoside Hydrolases,Glycoside Hydrolases, Nitrogen linked,Hydrolase, Nucleoside,Hydrolases, N Glycosyl,Hydrolases, Nitrogen-linked Glycoside,Hydrolases, Nucleoside,N Glycosyl Hydrolases,Nitrogen linked Glycoside Hydrolases
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010830 Physostigmine A cholinesterase inhibitor that is rapidly absorbed through membranes. It can be applied topically to the conjunctiva. It also can cross the blood-brain barrier and is used when central nervous system effects are desired, as in the treatment of severe anticholinergic toxicity. Eserine
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002552 Cerebral Ventricles Four CSF-filled (see CEREBROSPINAL FLUID) cavities within the cerebral hemispheres (LATERAL VENTRICLES), in the midline (THIRD VENTRICLE) and within the PONS and MEDULLA OBLONGATA (FOURTH VENTRICLE). Foramen of Monro,Cerebral Ventricular System,Cerebral Ventricle,Cerebral Ventricular Systems,Monro Foramen,System, Cerebral Ventricular,Systems, Cerebral Ventricular,Ventricle, Cerebral,Ventricles, Cerebral,Ventricular System, Cerebral,Ventricular Systems, Cerebral

Related Publications

D P Holschneider, and J J Waite, and A F Leuchter, and N Y Walton, and O U Scremin
September 2003, Neuroscience and biobehavioral reviews,
D P Holschneider, and J J Waite, and A F Leuchter, and N Y Walton, and O U Scremin
October 2014, Neurobiology of learning and memory,
D P Holschneider, and J J Waite, and A F Leuchter, and N Y Walton, and O U Scremin
December 1995, Brain research,
D P Holschneider, and J J Waite, and A F Leuchter, and N Y Walton, and O U Scremin
October 1996, Brain research,
D P Holschneider, and J J Waite, and A F Leuchter, and N Y Walton, and O U Scremin
August 2011, Neurochemistry international,
D P Holschneider, and J J Waite, and A F Leuchter, and N Y Walton, and O U Scremin
March 1994, Neuroscience letters,
D P Holschneider, and J J Waite, and A F Leuchter, and N Y Walton, and O U Scremin
September 1994, Neuroreport,
D P Holschneider, and J J Waite, and A F Leuchter, and N Y Walton, and O U Scremin
October 1996, Brain research. Developmental brain research,
D P Holschneider, and J J Waite, and A F Leuchter, and N Y Walton, and O U Scremin
July 1997, Synapse (New York, N.Y.),
D P Holschneider, and J J Waite, and A F Leuchter, and N Y Walton, and O U Scremin
June 1997, Behavioral neuroscience,
Copied contents to your clipboard!