Postnatal ethanol exposure blunts upregulation of GABAA receptor currents in Purkinje neurons. 1999

S H Hsiao, and J R West, and J C Mahoney, and G D Frye
Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.

Recently, we found that early postnatal ethanol exposure inhibits the maturation of GABAA receptors (GABAARs) in developing medial septum/diagonal band (MS/DB) neurons, suggesting that these receptors may represent a target for ethanol related to fetal alcohol syndrome (FAS). To determine whether GABAARs on other neurons are also sensitive to a postnatal ethanol insult, postnatal day (PD) 4-9, rat pups were artificially reared and exposed to ethanol (4.5 g kg-1 day-1, 10.2% v/v). The pharmacological profile of acutely dissociated cerebellar Purkinje cell GABAARs from untreated, artificially reared controls and ethanol-treated animals was examined with conventional whole-cell patch clamp recordings during PD 12-16 (juveniles) and PD 25-35 (young adults). For untreated animals, GABA (0.3-100 microM) consistently induced inward Cl- currents in a concentration-dependent manner showing an age-related increase in maximum response without change in EC50 or slope value. Acute ethanol (100 mM) consistently inhibited 3 microM GABA currents (10-20%); positive modulators, pentobarbital (10 microM), midazolam (1 microM) and loreclezole (10 microM), consistently potentiated; the negative modulator, Zn2+ (30 microM), inhibited GABA currents across both juvenile and young adult groups. Loreclezole potentiation increased while Zn2+ inhibition decreased with age in untreated Purkinje neurons. Postnatal ethanol exposure (PD 4-9) decreased GABAAR maximum current density in young adult Purkinje cells but not in juvenile neurons. However, sensitivity to allosteric modulators did not change after ethanol. These data are consistent with the hypothesis that postnatal ethanol exposure during the brain growth spurt can disturb GABAAR development across the brain, although the mechanism(s) underlying this action remains to be determined.

UI MeSH Term Description Entries
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

S H Hsiao, and J R West, and J C Mahoney, and G D Frye
November 1991, Brain research,
S H Hsiao, and J R West, and J C Mahoney, and G D Frye
July 1996, Neuroscience,
S H Hsiao, and J R West, and J C Mahoney, and G D Frye
July 2004, Neuropharmacology,
S H Hsiao, and J R West, and J C Mahoney, and G D Frye
October 1994, Synapse (New York, N.Y.),
S H Hsiao, and J R West, and J C Mahoney, and G D Frye
October 2017, Scientific reports,
S H Hsiao, and J R West, and J C Mahoney, and G D Frye
March 2011, Molecular pharmacology,
S H Hsiao, and J R West, and J C Mahoney, and G D Frye
December 1994, Brain research,
S H Hsiao, and J R West, and J C Mahoney, and G D Frye
November 1997, Journal of neurophysiology,
S H Hsiao, and J R West, and J C Mahoney, and G D Frye
April 2018, Neuroscience letters,
S H Hsiao, and J R West, and J C Mahoney, and G D Frye
February 1998, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!