Absolute quantitation of MDR1 transcripts using heterologous DNA standards--validation of the competitive RT-PCR (CRT-PCR) approach. 1999

A el-Osta, and P Kantharidis, and J Zalcberg
University of Melbourne, Austin & Repatriation Medical Centre, Heidelberg West, VIC, Australia.

The multidrug resistance (MDR1) gene product, P-glycoprotein (Pgp), is a 170-kDa ATP-dependent pump that expels a variety of anticancer drugs out of malignant cells, reducing drug accumulation and thus antitumor activity. In recent years, considerable data has been presented that indicates the need to standardize detection methods for Pgp and MDR1. Reverse transcription (RT)-PCR is one of the most sensitive and specific techniques used to detect MDR1. Nevertheless, there is the need to address working criteria for quantitation by RT-PCR. In this study, we describe a flexible assay used to quantify MDR1 gene expression using heterologous (nonhomologous) standards for use in competitive RT-PCR (CRT-PCR). Our guidelines were to use a RT-PCR quantitation method that was independent of exponential phase kinetics, sensitive (detect low levels of gene measurement in clinical samples) and did not require radiolabel. Furthermore, the method would need to be flexible enough for the user to express quantitation as either the number of cells or amount of cDNA used in CRT-PCR. Using low-stringency amplification, heterologous DNA competitors were constructed for MDR1 and as an internal reference, the ubiquitously expressed human histone variant 3.3 (H3.3). The benefits of this approach are threefold: (i) amplification kinetics of target and competitor molecules are identical, (ii) low-stringency PCR is a simple way of constructing heterologous DNA competitors that do not require special storage conditions and (iii) heterologous competitors avoid the formation of heteroduplex molecules. We conclude that CRT-PCR is an extremely flexible and sensitive assay that can quantify MDR1 based on competitive amplification of a heterologous competitor. This might complement future efforts to standardize MDR1 detection methods using RT-PCR.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D016375 Antisense Elements (Genetics) Nucleic acids which hybridize to complementary sequences in other target nucleic acids causing the function of the latter to be affected. Antisense Probes,Anti-Sense Elements,Anti-Sense Probes,Anti Sense Elements,Anti Sense Probes,Elements, Anti-Sense,Probes, Anti-Sense,Probes, Antisense

Related Publications

A el-Osta, and P Kantharidis, and J Zalcberg
October 2002, BioTechniques,
A el-Osta, and P Kantharidis, and J Zalcberg
October 1998, Molecular and cellular probes,
A el-Osta, and P Kantharidis, and J Zalcberg
March 2001, Clinical and diagnostic laboratory immunology,
A el-Osta, and P Kantharidis, and J Zalcberg
July 1998, BioTechniques,
A el-Osta, and P Kantharidis, and J Zalcberg
March 2003, Brain research. Brain research protocols,
A el-Osta, and P Kantharidis, and J Zalcberg
August 1993, PCR methods and applications,
A el-Osta, and P Kantharidis, and J Zalcberg
March 2006, Journal of virological methods,
A el-Osta, and P Kantharidis, and J Zalcberg
February 1994, PCR methods and applications,
A el-Osta, and P Kantharidis, and J Zalcberg
June 1995, Clinical chemistry,
Copied contents to your clipboard!