Differential regulation of corticotropin-releasing hormone and vasopressin gene transcription in the hypothalamus by norepinephrine. 1999

K Itoi, and D L Helmreich, and M O Lopez-Figueroa, and S J Watson
Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.

All stress-related inputs are conveyed to the hypothalamus via several brain areas and integrated in the parvocellular division of the paraventricular nucleus (PVN) where corticotropin-releasing hormone (CRH) is synthesized. Arginine vasopressin (AVP) is present in both magnocellular and parvocellular divisions of the PVN, and the latter population of AVP is colocalized with CRH. CRH and AVP are co-secreted in the face of certain stressful stimuli, and synthesis of both peptides is suppressed by glucocorticoid. CRH and AVP stimulate corticotropin (ACTH) secretion synergistically, but the physiological relevance of the dual corticotroph regulation is not understood. Norepinephrine (NE) is a well known neurotransmitter that regulates CRH neurons in the PVN. We explored the mode of action of NE on CRH and AVP gene transcription in the PVN to examine the effect of the neurotransmitter on multiple genes that are responsible for a common physiological function. After NE injection into the PVN of conscious rats, CRH heteronuclear (hn) RNA increased rapidly and markedly in the parvocellular division of the PVN. AVP hnRNA did not change significantly in either the parvocellular or magnocellular division of the PVN after NE injection. The present results show that the transcription of CRH and AVP genes is differentially regulated by NE, indicating the complexity of neurotransmitter regulation of multiple releasing hormone genes in a discrete hypothalamic neuronal population.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000324 Adrenocorticotropic Hormone An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP). ACTH,Adrenocorticotropin,Corticotropin,1-39 ACTH,ACTH (1-39),Adrenocorticotrophic Hormone,Corticotrophin,Corticotrophin (1-39),Corticotropin (1-39),Hormone, Adrenocorticotrophic,Hormone, Adrenocorticotropic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Itoi, and D L Helmreich, and M O Lopez-Figueroa, and S J Watson
December 1999, Endocrinology,
K Itoi, and D L Helmreich, and M O Lopez-Figueroa, and S J Watson
March 2008, Gene regulation and systems biology,
K Itoi, and D L Helmreich, and M O Lopez-Figueroa, and S J Watson
April 2004, Journal of neuroendocrinology,
K Itoi, and D L Helmreich, and M O Lopez-Figueroa, and S J Watson
July 1992, Molecular endocrinology (Baltimore, Md.),
K Itoi, and D L Helmreich, and M O Lopez-Figueroa, and S J Watson
July 2004, Regulatory peptides,
K Itoi, and D L Helmreich, and M O Lopez-Figueroa, and S J Watson
November 2013, Molecular endocrinology (Baltimore, Md.),
K Itoi, and D L Helmreich, and M O Lopez-Figueroa, and S J Watson
January 2010, Vitamins and hormones,
K Itoi, and D L Helmreich, and M O Lopez-Figueroa, and S J Watson
October 1993, Endocrinology,
K Itoi, and D L Helmreich, and M O Lopez-Figueroa, and S J Watson
April 1990, The American journal of physiology,
Copied contents to your clipboard!