Glutamine synthetase inactivation by protein-protein interaction. 1999

M García-Domínguez, and J C Reyes, and F J Florencio
Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Américo Vespucio s/n, E-41092 Sevilla, Spain.

Glutamine synthetase (GS; EC 6.3.1.2) is the pivotal enzyme of nitrogen metabolism in prokaryotes. Control of bacterial GS activity by reversible adenylylation has provided one of the classical paradigms of signal transduction by cyclic cascades. By contrast, in the present work we show that cyanobacterial GS is controlled by a different mechanism that involves the interaction of two inhibitory polypeptides with the enzyme. Both inactivating factors (IFs), named IF7 and IF17, are required in vivo for complete GS inactivation. Inactive GS-IF7 and GS-IF17 complexes were reconstituted in vitro by using Escherichia coli-expressed purified proteins. Our data suggest that control of GS activity is exerted by regulating the levels of IF7 and IF17.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005974 Glutamate-Ammonia Ligase An enzyme that catalyzes the conversion of ATP, L-glutamate, and NH3 to ADP, orthophosphate, and L-glutamine. It also acts more slowly on 4-methylene-L-glutamate. (From Enzyme Nomenclature, 1992) EC 6.3.1.2. Glutamine Synthetase,Glutamate Ammonia Ligase (ADP),Glutamate Ammonia Ligase,Ligase, Glutamate-Ammonia,Synthetase, Glutamine
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

M García-Domínguez, and J C Reyes, and F J Florencio
December 1990, The Journal of biological chemistry,
M García-Domínguez, and J C Reyes, and F J Florencio
May 1978, Biokhimiia (Moscow, Russia),
M García-Domínguez, and J C Reyes, and F J Florencio
April 1984, Proceedings of the National Academy of Sciences of the United States of America,
M García-Domínguez, and J C Reyes, and F J Florencio
July 1988, Brain research,
M García-Domínguez, and J C Reyes, and F J Florencio
April 1968, European journal of biochemistry,
M García-Domínguez, and J C Reyes, and F J Florencio
March 1967, Biochimica et biophysica acta,
M García-Domínguez, and J C Reyes, and F J Florencio
February 2011, Neuroscience letters,
M García-Domínguez, and J C Reyes, and F J Florencio
December 1992, Journal of biochemistry,
M García-Domínguez, and J C Reyes, and F J Florencio
January 1980, Molecular biology, biochemistry, and biophysics,
M García-Domínguez, and J C Reyes, and F J Florencio
August 1966, Biochimica et biophysica acta,
Copied contents to your clipboard!