Identification of urinary metabolites of isoprene in rats and comparison with mouse urinary metabolites. 1999

L A Buckley, and D P Coleman, and J P Burgess, and B F Thomas, and L T Burka, and A R Jeffcoat
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194, USA.

Isoprene, a major commodity chemical used in production of polyisoprene elastomers, has been shown to be carcinogenic in rodents. Similar to findings for the structurally related compound butadiene, mice are more susceptible than rats to isoprene-induced toxicity and carcinogenicity. Although differences in uptake, and disposition of isoprene in rats and mice have been described, its in vivo biotransformation products have not been characterized in either species. The purpose of these studies was to identify the urinary metabolites of isoprene in Fischer 344 rats and compare these metabolites with those formed in male B6C3F1 mice. After i.p. administration of 64 mg [14C]isoprene/kg to rats and mice, isoprene was excreted unchanged in breath ( approximately 50%) or as urinary metabolites ( approximately 32%). In rats isoprene was primarily excreted in urine as 2-hydroxy-2-methyl-3-butenoic acid (53%), 2-methyl-3-buten-1,2-diol (23%), and the C-1 glucuronide conjugate of 2-methyl-3-buten-1,2-diol (13%). These metabolites are consistent with preferential oxidation of isoprene's methyl-substituted vinyl group. No oxidation of the unsubstituted vinyl group was observed. In addition to the isoprene metabolites found in rat urine, mouse urine contained numerous other isoprene metabolites with a larger percentage (25%) of total urinary radioactivity associated with an unidentified, polar fraction than in the rat (7%). Unlike butadiene, there was no evidence that glutathione conjugation played a significant role in the metabolism of isoprene in rats. Because of the unidentified metabolites in mouse urine, involvement of glutathione in the metabolism of isoprene in mice cannot be delineated.

UI MeSH Term Description Entries
D008297 Male Males
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010420 Pentanes Five-carbon saturated hydrocarbon group of the methane series. Include isomers and derivatives. Isopentanes
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002070 Butadienes Four carbon unsaturated hydrocarbons containing two double bonds. Butadiene Derivative,Butadiene Derivatives,Derivative, Butadiene,Derivatives, Butadiene
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

L A Buckley, and D P Coleman, and J P Burgess, and B F Thomas, and L T Burka, and A R Jeffcoat
January 1991, Archives of toxicology,
L A Buckley, and D P Coleman, and J P Burgess, and B F Thomas, and L T Burka, and A R Jeffcoat
February 2010, Drug metabolism and disposition: the biological fate of chemicals,
L A Buckley, and D P Coleman, and J P Burgess, and B F Thomas, and L T Burka, and A R Jeffcoat
May 1987, Xenobiotica; the fate of foreign compounds in biological systems,
L A Buckley, and D P Coleman, and J P Burgess, and B F Thomas, and L T Burka, and A R Jeffcoat
January 1980, Drug metabolism and disposition: the biological fate of chemicals,
L A Buckley, and D P Coleman, and J P Burgess, and B F Thomas, and L T Burka, and A R Jeffcoat
January 1978, Journal of pharmaceutical sciences,
L A Buckley, and D P Coleman, and J P Burgess, and B F Thomas, and L T Burka, and A R Jeffcoat
March 1992, Journal of UOEH,
L A Buckley, and D P Coleman, and J P Burgess, and B F Thomas, and L T Burka, and A R Jeffcoat
September 1996, Xenobiotica; the fate of foreign compounds in biological systems,
L A Buckley, and D P Coleman, and J P Burgess, and B F Thomas, and L T Burka, and A R Jeffcoat
November 2008, Drug metabolism and disposition: the biological fate of chemicals,
L A Buckley, and D P Coleman, and J P Burgess, and B F Thomas, and L T Burka, and A R Jeffcoat
January 2008, Journal of agricultural and food chemistry,
L A Buckley, and D P Coleman, and J P Burgess, and B F Thomas, and L T Burka, and A R Jeffcoat
April 1981, Chemical & pharmaceutical bulletin,
Copied contents to your clipboard!