Biochemical and neurotoxicological effects of L-2-chloropropionic acid on rodent brain. 1999

R E Williams, and P Jones, and E A Lock, and H S Bachelard
Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, England.

L-2-Chloropropionic acid (L-CPA) is selectively toxic to cerebellar granule cells; necrosis is first observed in rats 36 h after L-CPA administration (750 mg/kg p.o.) and becomes marked by 48 h. L-CPA has also been shown to activate the mitochondrial pyruvate dehydrogenase (PDH) complex in fasted adult rats, resulting in reduced blood glucose and lactate levels. This study aimed to investigate the biochemical and neurotoxicological effects of L-CPA on the brain. Extracts, prepared from guinea-pig cerebellar and cerebral cortex slices incubated in the presence of L-CPA, were analysed using 1H magnetic resonance spectroscopy, 31P magnetic resonance spectroscopy, and amino acid analysis. Glucose metabolism was studied by monitoring the metabolism of [1-(13)C]glucose using gas chromatography/mass spectrometry. Increased glucose metabolism and decreases in the pool sizes of lactate and alanine were observed in both tissues, demonstrating activation of the PDH complex. Extracts were also prepared from the forebrain and cerebellum of animals that had been treated in vivo with L-CPA and analysed as described for the in vitro studies. Similar evidence for PDH activation was demonstrated at 2 and 24 h after dosing in both tissues. At 48 h after dosing, when signs of toxicity are observed, an increase in the lactate concentration and a decrease in N-acetylaspartate in the cerebellum but not in the forebrain confirmed the selective neurotoxic action of L-CPA. These results suggest that activation of the PDH complex does not directly lead to the delayed selective neurotoxicity of L-CPA.

UI MeSH Term Description Entries
D008297 Male Males
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D011422 Propionates Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure. Propanoate,Propanoic Acid,Propionate,Propanoates,Propanoic Acid Derivatives,Propanoic Acids,Propionic Acid Derivatives,Propionic Acids,Acid, Propanoic,Acids, Propanoic,Acids, Propionic,Derivatives, Propanoic Acid,Derivatives, Propionic Acid
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical

Related Publications

R E Williams, and P Jones, and E A Lock, and H S Bachelard
February 2001, Magnetic resonance imaging,
R E Williams, and P Jones, and E A Lock, and H S Bachelard
February 2001, Journal of neurochemistry,
R E Williams, and P Jones, and E A Lock, and H S Bachelard
July 1984, Biotechnology and bioengineering,
R E Williams, and P Jones, and E A Lock, and H S Bachelard
May 2004, Neuroscience letters,
R E Williams, and P Jones, and E A Lock, and H S Bachelard
May 2000, Archives of toxicology,
R E Williams, and P Jones, and E A Lock, and H S Bachelard
January 1996, Neurotoxicology,
R E Williams, and P Jones, and E A Lock, and H S Bachelard
November 2019, Journal of molecular graphics & modelling,
R E Williams, and P Jones, and E A Lock, and H S Bachelard
January 1997, Archives of toxicology,
R E Williams, and P Jones, and E A Lock, and H S Bachelard
December 2004, Neurotoxicology,
Copied contents to your clipboard!