Apo and holo crystal structures of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans. 1999

D Cobessi, and F Tête-Favier, and S Marchal, and S Azza, and G Branlant, and A Aubry
Groupe Biocristallographie, ESA 7036 Faculté des Sciences, BP 239, Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques, Vandoeuvre-lès-Nancy, 54506, France.

The aldehyde dehydrogenases (ALDHs) are a superfamily of multimeric enzymes which catalyse the oxidation of a broad range of aldehydes into their corresponding carboxylic acids with the reduction of their cofactor, NAD or NADP, into NADH or NADPH. At present, the only known structures concern NAD-dependent ALDHs. Three structures are available in the Protein Data Bank: two are tetrameric and the other is a dimer. We solved by molecular replacement the first structure of an NADP-dependent ALDH isolated from Streptococcus mutans, in its apo form and holo form in complex with NADP, at 1.8 and 2.6 A resolution, respectively. Although the protein sequence shares only approximately 30 % identity with the other solved tetrameric ALDHs, the structures are very similar. However, a large local conformational change in the region surrounding the 2' phosphate group of the adenosine moiety is observed when the enzyme binds NADP, in contrast to the NAD-dependent ALDHs. Structure and sequence analyses reveal several properties. A small number of residues seem to determine the oligomeric state. Likewise, the nature (charge and volume) of the residue at position 180 (Thr in ALDH from S. mutans) determines the cofactor specificity in comparison with the structures of NAD-dependent ALDHs. The presence of a hydrogen bond network around the cofactor not only allows it to bind to the enzyme but also directs the side-chains in a correct orientation for the catalytic reaction to take place. Moreover, a specific part of this network appears to be important in substrate binding. Since the enzyme oxidises the same substrate, glyceraldehyde-3-phosphate (G3P), as NAD-dependent phosphorylating glyceraldehyde-3-phosphate dehydrogenases (GAPDH), the active site of GAPDH was compared with that of the S. mutans ALDH. It was found that Arg103, Arg283 and Asp440 might be key residues for substrate binding.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009536 Niacinamide An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Nicotinamide,Vitamin B 3,Vitamin PP,3-Pyridinecarboxamide,Enduramide,Nicobion,Nicotinsäureamid Jenapharm,Papulex,Vitamin B3,3 Pyridinecarboxamide,B 3, Vitamin,B3, Vitamin,Jenapharm, Nicotinsäureamid
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D005987 Glyceraldehyde-3-Phosphate Dehydrogenases Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000445 Aldehyde Oxidoreductases Oxidoreductases that are specific for ALDEHYDES. Aldehyde Oxidoreductase,Oxidoreductase, Aldehyde,Oxidoreductases, Aldehyde
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013295 Streptococcus mutans A polysaccharide-producing species of STREPTOCOCCUS isolated from human dental plaque.

Related Publications

D Cobessi, and F Tête-Favier, and S Marchal, and S Azza, and G Branlant, and A Aubry
August 2004, Journal of molecular biology,
D Cobessi, and F Tête-Favier, and S Marchal, and S Azza, and G Branlant, and A Aubry
February 1994, Journal of molecular biology,
D Cobessi, and F Tête-Favier, and S Marchal, and S Azza, and G Branlant, and A Aubry
November 2011, International journal of biological macromolecules,
D Cobessi, and F Tête-Favier, and S Marchal, and S Azza, and G Branlant, and A Aubry
April 1993, Journal of molecular biology,
D Cobessi, and F Tête-Favier, and S Marchal, and S Azza, and G Branlant, and A Aubry
January 2018, Archaea (Vancouver, B.C.),
D Cobessi, and F Tête-Favier, and S Marchal, and S Azza, and G Branlant, and A Aubry
December 2013, Antonie van Leeuwenhoek,
D Cobessi, and F Tête-Favier, and S Marchal, and S Azza, and G Branlant, and A Aubry
August 2000, The Biochemical journal,
D Cobessi, and F Tête-Favier, and S Marchal, and S Azza, and G Branlant, and A Aubry
March 2009, Journal of structural biology,
D Cobessi, and F Tête-Favier, and S Marchal, and S Azza, and G Branlant, and A Aubry
February 2009, BMC structural biology,
D Cobessi, and F Tête-Favier, and S Marchal, and S Azza, and G Branlant, and A Aubry
January 2016, PloS one,
Copied contents to your clipboard!