Oxidative damage in fetal rat brain induced by ischemia and subsequent reperfusion. Relation to arachidonic acid peroxidation. 1999

A Wakatsuki, and C Izumiya, and Y Okatani, and Y Sagara
Department of Obstetrics and Gynecology, Kochi Medical School, Kochi, Japan.

To determine whether ischemia followed by subsequent reperfusion can induce fetal cerebral oxidative damage, we created a model of fetal ischemia/reperfusion using rats at day 19 of pregnancy. Fetal ischemia was induced by unilateral occlusion of the utero-ovarian artery for 20 min. Reperfusion was achieved by releasing the occlusion and restoring the circulation for 30 min. The opposite uterine horn was used as control. We measured brain mitochondrial respiratory control index (RCI) and the concentration of thiobarbituric acid-reactive substances (TBARS) in each group. Arachidonic acid (AA) peroxidation induced by the incubation of brain microvessel fraction and AA was measured. AA peroxidation was also evaluated with and without aspirin, an inhibitor of cyclooxygenase and phenidone, which inhibits both of cyclooxygenase and lipoxygenase. The RCI significantly decreased by the occlusion with (p < 0.01) or without reperfusion (p < 0.05). The TBARS level significantly increased with occlusion plus reperfusion (p < 0.01). AA peroxidation was significantly greater in the occlusion and occlusion plus reperfusion groups than in the control groups (p < 0. 01). Aspirin did not affect peroxidation, while phenidone significantly inhibited it in a concentration-dependent manner (p < 0.001). Accordingly, ischemia followed by reperfusion is likely to induce fetal cerebral lipid peroxidation, which may inhibit mitochondrial respiratory activity. The phenidone-inhibited enzyme lipoxygenase may participate importantly in this peroxidation.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011720 Pyrazoles Azoles of two nitrogens at the 1,2 positions, next to each other, in contrast with IMIDAZOLES in which they are at the 1,3 positions.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002546 Ischemic Attack, Transient Brief reversible episodes of focal, nonconvulsive ischemic dysfunction of the brain having a duration of less than 24 hours, and usually less than one hour, caused by transient thrombotic or embolic blood vessel occlusion or stenosis. Events may be classified by arterial distribution, temporal pattern, or etiology (e.g., embolic vs. thrombotic). (From Adams et al., Principles of Neurology, 6th ed, pp814-6) Brain Stem Ischemia, Transient,Cerebral Ischemia, Transient,Crescendo Transient Ischemic Attacks,Transient Ischemic Attack,Anterior Circulation Transient Ischemic Attack,Brain Stem Transient Ischemic Attack,Brain TIA,Brainstem Ischemia, Transient,Brainstem Transient Ischemic Attack,Carotid Circulation Transient Ischemic Attack,Posterior Circulation Transient Ischemic Attack,TIA (Transient Ischemic Attack),Transient Ischemic Attack, Anterior Circulation,Transient Ischemic Attack, Brain Stem,Transient Ischemic Attack, Brainstem,Transient Ischemic Attack, Carotid Circulation,Transient Ischemic Attack, Posterior Circulation,Transient Ischemic Attack, Vertebrobasilar Circulation,Transient Ischemic Attacks, Crescendo,Vertebrobasilar Circulation Transient Ischemic Attack,Attack, Transient Ischemic,Attacks, Transient Ischemic,Brainstem Ischemias, Transient,Cerebral Ischemias, Transient,Ischemia, Transient Brainstem,Ischemia, Transient Cerebral,Ischemias, Transient Brainstem,Ischemias, Transient Cerebral,Ischemic Attacks, Transient,TIA, Brain,TIAs (Transient Ischemic Attack),Transient Brainstem Ischemia,Transient Cerebral Ischemia,Transient Cerebral Ischemias,Transient Ischemic Attacks
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005260 Female Females
D005315 Fetal Diseases Pathophysiological conditions of the FETUS in the UTERUS. Some fetal diseases may be treated with FETAL THERAPIES. Embryopathies,Disease, Fetal,Diseases, Fetal,Embryopathy,Fetal Disease
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Wakatsuki, and C Izumiya, and Y Okatani, and Y Sagara
September 2001, Journal of pineal research,
A Wakatsuki, and C Izumiya, and Y Okatani, and Y Sagara
February 2018, Human & experimental toxicology,
A Wakatsuki, and C Izumiya, and Y Okatani, and Y Sagara
January 2003, Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery,
A Wakatsuki, and C Izumiya, and Y Okatani, and Y Sagara
November 2004, Journal of pineal research,
A Wakatsuki, and C Izumiya, and Y Okatani, and Y Sagara
January 1991, Biomedica biochimica acta,
A Wakatsuki, and C Izumiya, and Y Okatani, and Y Sagara
December 2003, Biochemistry,
A Wakatsuki, and C Izumiya, and Y Okatani, and Y Sagara
April 2006, Mechanisms of ageing and development,
A Wakatsuki, and C Izumiya, and Y Okatani, and Y Sagara
September 2001, Journal of pineal research,
A Wakatsuki, and C Izumiya, and Y Okatani, and Y Sagara
March 2003, European journal of pharmacology,
A Wakatsuki, and C Izumiya, and Y Okatani, and Y Sagara
January 2016, Current Alzheimer research,
Copied contents to your clipboard!