Insulin-like growth factor binding protein-1 in NIDDM: relationship with the insulin resistance syndrome. 1999

V Mohamed-Ali, and J H Pinkney, and A Panahloo, and S Cwyfan-Hughes, and J M Holly, and J S Yudkin
Centre For Diabetes and Cardiovascular Risk, University College London Medical School, UK. vmohamed@med.ucl.ac.uk

OBJECTIVE In order to examine the role of insulin-like growth factors in the pathogenesis of accelerated macrovascular disease in noninsulin-dependent diabetes mellitus (NIDDM), we investigated the relationship between the insulin resistance syndrome and the IGF axis. METHODS Cross-sectional analysis of the relationship between insulin resistance syndrome variables and concentrations of IGF-1, IGF-2, IGFBP-1 and IGFBP-3 in 80 subjects with NIDDM. RESULTS After correcting for age, sex and body mass index, concentrations of IGFBP-1, correlated with those of HDL-cholesterol (r = 0.40; P < 0.001), triglycerides (r = -0.24; P = 0.04), insulin (r = -0.39; P < 0.001), intact proinsulin (r = -0.32; P = 0.006), des 31,32 proinsulin (r = -0.40; P = 0.001), and with insulin sensitivity (r = 0.38; P = 0.001) and PAI-1 activity (r = -0.24; P = 0.05); IGF-1 levels only correlated with those of HDL-cholesterol (r = -0.33; P = 0.005), and this was not explained by IGFBP-1 or insulin sensitivity. With additional correction for insulin, concentrations of IGFBP-1 still correlated with HDL-cholesterol (r = 0.40; P < 0.001), but not those of triglycerides or PAI-1 activity. There were no significant relationships between levels of IGF-2 and any of the variables investigated, and IGFBP-3 levels only correlated with those of total cholesterol (r = 0.24, P = 0.04). CONCLUSIONS In NIDDM, concentrations of IGFBP-1 are related to those of insulin, insulin sensitivity, serum lipoproteins and PAI-1 activity. The relationship between concentrations of IGFBP-1 and HDL-cholesterol is not explained by insulin. Concentrations of IGF-1 are linked to HDL-cholesterol, and this is not explained by levels of IGFBP-1. IGFBP-1 concentrations were related to PAI-1 activity, and this may be explained by insulin, which regulates the production of IGFBP-1 and PAI-1.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007335 Insulin-Like Growth Factor II A well-characterized neutral peptide believed to be secreted by the LIVER and to circulate in the BLOOD. It has growth-regulating, insulin-like and mitogenic activities. The growth factor has a major, but not absolute, dependence on SOMATOTROPIN. It is believed to be a major fetal growth factor in contrast to INSULIN-LIKE GROWTH FACTOR I, which is a major growth factor in adults. IGF-II,Multiplication-Stimulating Activity,Somatomedin MSA,IGF-2,Insulin Like Growth Factor II,Insulin-Like Somatomedin Peptide II,Multiplication-Stimulating Factor,Somatomedin A,Factor, Multiplication-Stimulating,Insulin Like Somatomedin Peptide II,Multiplication Stimulating Activity,Multiplication Stimulating Factor
D008076 Cholesterol, HDL Cholesterol which is contained in or bound to high-density lipoproteins (HDL), including CHOLESTEROL ESTERS and free cholesterol. High Density Lipoprotein Cholesterol,Cholesterol, HDL2,Cholesterol, HDL3,HDL Cholesterol,HDL(2) Cholesterol,HDL(3) Cholesterol,HDL2 Cholesterol,HDL3 Cholesterol,alpha-Lipoprotein Cholesterol,Cholesterol, alpha-Lipoprotein,alpha Lipoprotein Cholesterol
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011384 Proinsulin A pancreatic polypeptide of about 110 amino acids, depending on the species, that is the precursor of insulin. Proinsulin, produced by the PANCREATIC BETA CELLS, is comprised sequentially of the N-terminal B-chain, the proteolytically removable connecting C-peptide, and the C-terminal A-chain. It also contains three disulfide bonds, two between A-chain and B-chain. After cleavage at two locations, insulin and C-peptide are the secreted products. Intact proinsulin with low bioactivity also is secreted in small amounts.
D011498 Protein Precursors Precursors, Protein
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions

Related Publications

V Mohamed-Ali, and J H Pinkney, and A Panahloo, and S Cwyfan-Hughes, and J M Holly, and J S Yudkin
January 2008, The Journal of international medical research,
V Mohamed-Ali, and J H Pinkney, and A Panahloo, and S Cwyfan-Hughes, and J M Holly, and J S Yudkin
December 1998, Fertility and sterility,
V Mohamed-Ali, and J H Pinkney, and A Panahloo, and S Cwyfan-Hughes, and J M Holly, and J S Yudkin
December 1996, Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology,
V Mohamed-Ali, and J H Pinkney, and A Panahloo, and S Cwyfan-Hughes, and J M Holly, and J S Yudkin
January 2003, BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy,
V Mohamed-Ali, and J H Pinkney, and A Panahloo, and S Cwyfan-Hughes, and J M Holly, and J S Yudkin
November 2001, Thyroid : official journal of the American Thyroid Association,
V Mohamed-Ali, and J H Pinkney, and A Panahloo, and S Cwyfan-Hughes, and J M Holly, and J S Yudkin
February 2000, Clinical endocrinology,
V Mohamed-Ali, and J H Pinkney, and A Panahloo, and S Cwyfan-Hughes, and J M Holly, and J S Yudkin
July 1996, Hepatology (Baltimore, Md.),
V Mohamed-Ali, and J H Pinkney, and A Panahloo, and S Cwyfan-Hughes, and J M Holly, and J S Yudkin
July 1996, British journal of obstetrics and gynaecology,
V Mohamed-Ali, and J H Pinkney, and A Panahloo, and S Cwyfan-Hughes, and J M Holly, and J S Yudkin
November 2000, Human reproduction (Oxford, England),
V Mohamed-Ali, and J H Pinkney, and A Panahloo, and S Cwyfan-Hughes, and J M Holly, and J S Yudkin
February 2007, Diabetes technology & therapeutics,
Copied contents to your clipboard!